1,297 research outputs found
Opportunistic Spectrum Sharing using Dumb Basis Patterns: The Line-of-Sight Interference Scenario
We investigate a spectrum-sharing system with non-severely faded mutual
interference links, where both the secondary-to-primary and
primary-to-secondary channels have a Line-of-Sight (LoS) component. Based on a
Rician model for the LoS channels, we show, analytically and numerically, that
LoS interference hinders the achievable secondary user capacity. This is caused
by the poor dynamic range of the interference channels fluctuations when a
dominant LoS component exists. In order to improve the capacity of such system,
we propose the usage of an Electronically Steerable Parasitic Array Radiator
(ESPAR) antenna at the secondary terminals. An ESPAR antenna requires a single
RF chain and has a reconfigurable radiation pattern that is controlled by
assigning arbitrary weights to M orthonormal basis radiation patterns. By
viewing these orthonormal patterns as multiple virtual dumb antennas, we
randomly vary their weights over time creating artificial channel fluctuations
that can perfectly eliminate the undesired impact of LoS interference. Because
the proposed scheme uses a single RF chain, it is well suited for compact and
low cost mobile terminals
Dissipative Processes in the Early Universe: Bulk Viscosity
In this talk, we discuss one of the dissipative processes which likely take
place in the Early Universe. We assume that the matter filling the isotropic
and homogeneous background is to be described by a relativistic viscous fluid
characterized by an ultra-relativistic equation of state and finite bulk
viscosity deduced from recent lattice QCD calculations and heavy-ion collisions
experiments. We concentrate our treatment to bulk viscosity as one of the
essential dissipative processes in the rapidly expanding Early Universe and
deduce the dependence of the scale factor and Hubble parameter on the comoving
time . We find that both scale factor and Hubble parameter are finite at
, revering to absence of singularity. We also find that their evolution
apparently differs from the one resulting in when assuming that the background
matter is an ideal and non-viscous fluid.Comment: 8 pages, 2 eps figure, Invited talk given at the 7th international
conference on "Modern Problems of Nuclear Physics", 22-25 September 2009,
Tashkent-Uzbekista
Mathematical modeling of the gas and powder flow in the (HVOF) systems to optimize their coatings quality
Thermally sprayed coatings have been extensively used to enhance materials properties and provide surface protection against their working environments in a number of industrial applications. Thermal barrier coatings (TBC) are used to reduce the thermal conductivity of aerospace turbine blades and improve the turbine overall thermal efficiency. TBC allows higher gas operating temperatures and lower blade material temperatures due to the thermal insulation provided by these ceramic coatings. In the automotive industry, coatings are currently applied to a number of moving parts that are subjected to friction and wear inside the engine such as pistons, cylinder liners, valves and crankshafts to enhance their wear resistance and prolong their useful operation and lifetime
Matter-Antimatter Asymmetry in the Large Hadron Collider
The matter-antimatter asymmetry is one of the greatest challenges in the
modern physics. The universe including this paper and even the reader
him(her)self seems to be built up of ordinary matter only. Theoretically, the
well-known Sakharov's conditions remain the solid framework explaining the
circumstances that matter became dominant against the antimatter while the
universe cools down and/or expands. On the other hand, the standard model for
elementary particles apparently prevents at least two conditions out of them.
In this work, we introduce a systematic study of the antiparticle-to-particle
ratios measured in various and collisions over the last three
decades. It is obvious that the available experimental facilities turn to be
able to perform nuclear collisions, in which the matter-antimatter asymmetry
raises from at AGS to at LHC. Assuming that the final
state of hadronization in the nuclear collisions takes place along the
freezeout line, which is defined by a constant entropy density, various
antiparticle-to-particle ratios are studied in framework of the hadron
resonance gas (HRG) model. Implementing modified phase space and distribution
function in the grand-canonical ensemble and taking into account the
experimental acceptance, the ratios of antiparticle-to-particle over the whole
range of center-of-mass-energies are very well reproduced by the HRG model.
Furthermore, the antiproton-to-proton ratios measured by ALICE in
collisions is also very well described by the HRG model. It is likely to
conclude that the LHC heavy-ion program will produce the same particle ratios
as the program implying the dynamics and evolution of the system would not
depend on the initial conditions. The ratios of bosons and baryons get very
close to unity indicating that the matter-antimatter asymmetry nearly vanishes
at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl
- …