1,059 research outputs found

    Opportunistic Spectrum Sharing using Dumb Basis Patterns: The Line-of-Sight Interference Scenario

    Full text link
    We investigate a spectrum-sharing system with non-severely faded mutual interference links, where both the secondary-to-primary and primary-to-secondary channels have a Line-of-Sight (LoS) component. Based on a Rician model for the LoS channels, we show, analytically and numerically, that LoS interference hinders the achievable secondary user capacity. This is caused by the poor dynamic range of the interference channels fluctuations when a dominant LoS component exists. In order to improve the capacity of such system, we propose the usage of an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna at the secondary terminals. An ESPAR antenna requires a single RF chain and has a reconfigurable radiation pattern that is controlled by assigning arbitrary weights to M orthonormal basis radiation patterns. By viewing these orthonormal patterns as multiple virtual dumb antennas, we randomly vary their weights over time creating artificial channel fluctuations that can perfectly eliminate the undesired impact of LoS interference. Because the proposed scheme uses a single RF chain, it is well suited for compact and low cost mobile terminals

    Mathematical modeling of the gas and powder flow in the (HVOF) systems to optimize their coatings quality

    Get PDF
    Thermally sprayed coatings have been extensively used to enhance materials properties and provide surface protection against their working environments in a number of industrial applications. Thermal barrier coatings (TBC) are used to reduce the thermal conductivity of aerospace turbine blades and improve the turbine overall thermal efficiency. TBC allows higher gas operating temperatures and lower blade material temperatures due to the thermal insulation provided by these ceramic coatings. In the automotive industry, coatings are currently applied to a number of moving parts that are subjected to friction and wear inside the engine such as pistons, cylinder liners, valves and crankshafts to enhance their wear resistance and prolong their useful operation and lifetime

    Matter-Antimatter Asymmetry in the Large Hadron Collider

    Full text link
    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various NNNN and AAAA collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from ∼0\sim 0% at AGS to ∼100\sim 100% at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant entropy density, various antiparticle-to-particle ratios are studied in framework of the hadron resonance gas (HRG) model. Implementing modified phase space and distribution function in the grand-canonical ensemble and taking into account the experimental acceptance, the ratios of antiparticle-to-particle over the whole range of center-of-mass-energies are very well reproduced by the HRG model. Furthermore, the antiproton-to-proton ratios measured by ALICE in pppp collisions is also very well described by the HRG model. It is likely to conclude that the LHC heavy-ion program will produce the same particle ratios as the pppp program implying the dynamics and evolution of the system would not depend on the initial conditions. The ratios of bosons and baryons get very close to unity indicating that the matter-antimatter asymmetry nearly vanishes at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl

    Multislice computed tomography evaluation of primary abdominal fat necrosis : a rare cause of acute abdominal pain

    Get PDF
    Purpose: Abdominal fat necrosis is a rare cause of abdominal acute pain, classified into primary or secondary according to the cause. Primary fat necrosis includes epiploic appendagitis or idiopathic infarction of the greater omentum. This retrospective study focuses on multislice computed tomography (MSCT) findings and diagnosis of primary abdominal fat necrosis as a cause of acute abdomen. Material and methods: This was a retrospective study with 20 patients included, presented to emergency room with acute abdominal pain diagnosed as primary fat necrosis. Retrospective evaluation was made of the patients' clinical data, presentation, CT studies done at the acute stage, and their primary and final diagnosis. Results: Twenty patients (eight male and 12 female, mean age 45 years, age range 20-70 years) diagnosed with abdominal fat necrosis (primary omental infarct) on CT imaging between October 2014 and June 2018 were evaluated. Clinically, five patients were suspected to be cholecystitis¸ eight patients as appendicitis, and four patients as diverticulitis. In addition, three patients had renal colic and were suspected to have ureteric stones; they showed suspected areas of abnormal fat density in non-contrast CT of the urinary tract. Idiopathic omental infarctions were detected in 13 patients on CT; all were on the right side. Laparoscopic excision was done for all. The other seven patients had epiploic appendagitis, seen on the left side, treated with conservative management. Conclusions: Primary fat necrosis, although rare, can be presented as acute abdomen. MSCT is the main diagnostic tool for diagnosis of omental infraction and differentiation between other causes of acute abdomen

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph
    • …
    corecore