1,032 research outputs found

    Nuclear Force from Lattice QCD

    Get PDF
    The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.Comment: A talk given at the XXIV International Symposium on Lattice Field Theory (Lattice2006), Tucson, Arizona, USA, July 23-28, 2006, 3 figures, 7page

    Recent advances in the theory of nuclear forces

    Get PDF
    After a brief historical review, we present recent progress in our understanding of nuclear forces in terms of chiral effective field theory.Comment: 6 pages, 2 figures; talk at International Symposium on Correlations Dynamics in Nuclei, University of Tokyo, Japan, 31 January-4 February, 200

    Measurement of neutron diffraction with compact neutron source RANS

    Get PDF
    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials

    Accurate Charge-Dependent Nucleon-Nucleon Potential at Fourth Order of Chiral Perturbation Theory

    Full text link
    We present the first nucleon-nucleon potential at next-to-next-to-next-to-leading order (fourth order) of chiral perturbation theory. Charge-dependence is included up to next-to-leading order of the isospin-violation scheme. The accuracy for the reproduction of the NN data below 290 MeV lab. energy is comparable to the one of phenomenological high-precision potentials. Since NN potentials of order three and less are known to be deficient in quantitative terms, the present work shows that the fourth order is necessary and sufficient for a reliable NN potential derived from chiral effective Lagrangians. The new potential provides a promising starting point for exact few-body calculations and microscopic nuclear structure theory (including chiral many-body forces derived on the same footing).Comment: 4 pages Revtex including one figur

    Scalar Glueball Decay Into Pions In Effective Theory

    Get PDF
    We discuss the mixing between the sigma meson sigma and the "pure" glueball field H and study the decays of the scalar glueball candidates f_0(1370), f_0(1500) and f_0(1710) (a linear combination of sigma and H) into two pions in an effective linear sigma model.Comment: 10 pages and 3 figures (an extended version of hep-ph/9805412), to appear in Phys. Rev.

    Status and overview of development of the Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC

    Get PDF
    We have developed a silicon pixel detector to enhance the physics capabilities of the PHENIX experiment. This detector, consisting of two layers of sensors, will be installed around the beam pipe at the collision point and covers a pseudo-rapidity of | \eta | < 1.2 and an azimuth angle of | \phi | ~ 2{\pi}. The detector uses 200 um thick silicon sensors and readout chips developed for the ALICE experiment. In order to meet the PHENIX DAQ readout requirements, it is necessary to read out 4 readout chips in parallel. The physics goals of PHENIX require that radiation thickness of the detector be minimized. To meet these criteria, the detector has been designed and developed. In this paper, we report the current status of the development, especially the development of the low-mass readout bus and the front-end readout electronics.Comment: 9 pages, 8 figures and 1 table in DOCX (Word 2007); PIXEL 2008 workshop proceedings, will be published in the Proceedings Section of JINST(Journal of Instrumentation

    Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics

    Full text link
    The nuclear force acting between protons and neutrons is studied in the Monte Carlo simulations of the fundamental theory of the strong interaction, the quantum chromodynamics defined on the hypercubic space-time lattice. After a brief summary of the empirical nucleon-nucleon (NN) potentials which can fit the NN scattering experiments in high precision, we outline the basic formulation to derive the potential between the extended objects such as the nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key ingredient for defining the NN potential on the lattice. We show the results of the numerical simulations on a 32432^4 lattice with the lattice spacing a≃0.137a \simeq 0.137 fm (lattice volume (4.4 fm)4^4) in the quenched approximation. The calculation was carried out using the massively parallel computer Blue Gene/L at KEK. We found that the calculated NN potential at low energy has basic features expected from the empirical NN potentials; attraction at long and medium distances and the repulsive core at short distance. Various future directions along this line of research are also summarized.Comment: 13 pages, 4 figures, version accepted for publication in "Computational Science & Discovery" (IOP

    Coupling a Superconducting Qubit to a Left-Handed Metamaterial Resonator

    Full text link
    Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.Comment: 12 pages, 11 figure
    • 

    corecore