591 research outputs found

    Obtaining Breathers in Nonlinear Hamiltonian Lattices

    Full text link
    We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.Comment: 21 pages (LaTeX), 8 figures in ps-files, tar-compressed uuencoded file, Physical Review E, in pres

    Homodyne locking of a squeezer

    Full text link
    We report on the successful implementation of a new approach to locking the frequencies of an OPO-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase-shifts induced by a cavity, which may be used for the purposes of frequency-locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement and has the distinct advantage that subsequent homodyne measurements are automatically phase-locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.Comment: Accepted to Optics Letter

    Characterization of mutations induced by N-methyl-N '-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain

    Get PDF
    ArticleMUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS. 649(1-2): 239-244 (2008)journal articl

    Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices

    Full text link
    Discrete breathers are time-periodic, spatially localized solutions of equations of motion for classical degrees of freedom interacting on a lattice. They come in one-parameter families. We report on studies of energy properties of breather families in one-, two- and three-dimensional lattices. We show that breather energies have a positive lower bound if the lattice dimension of a given nonlinear lattice is greater than or equal to a certain critical value. These findings could be important for the experimental detection of discrete breathers.Comment: 10 pages, LaTeX, 4 figures (ps), Physical Review Letters, in prin
    • …
    corecore