943 research outputs found

    Frequency doubling in Ga:La:S optical glass with microcrystals

    No full text
    Second harmonic generation in gallium-lanthanum-sulphide (Ga:La:S) and GeS2+Ga:La:S glasses is investigated. It is shown that microcrystals of Ga:La:S and of alpha-phase of gallium-sulphide (alpha-Ga2S3), whose presence in the glass matrix is revealed by x-ray diffraction analysis, are responsible for the frequency doubling process

    Knizhnik-Zamolodchikov-Bernard equations connected with the eight-vertex model

    Full text link
    Using quasiclassical limit of Baxter's 8 - vertex R - matrix, an elliptic generalization of the Knizhnik-Zamolodchikov equation is constructed. Via Off-Shell Bethe ansatz an integrable representation for this equation is obtained. It is shown that there exists a gauge transformation connecting this equation with Knizhnik-Zamolodchikov-Bernard equation for SU(2)-WZNW model on torus.Comment: 20 pages latex, macro: tcilate

    Glass fibre poling and applications

    No full text
    Recent developments in the application of poled optical fibers to second harmonic generation and electrooptic light modulation are reviewed

    From finite geometry exact quantities to (elliptic) scattering amplitudes for spin chains: the 1/2-XYZ

    Full text link
    Initially, we derive a nonlinear integral equation for the vacuum counting function of the spin 1/2-XYZ chain in the {\it disordered regime}, thus paralleling similar results by Kl\"umper \cite{KLU}, achieved through a different technique in the {\it antiferroelectric regime}. In terms of the counting function we obtain the usual physical quantities, like the energy and the transfer matrix (eigenvalues). Then, we introduce a double scaling limit which appears to describe the sine-Gordon theory on cylindrical geometry, so generalising famous results in the plane by Luther \cite{LUT} and Johnson et al. \cite{JKM}. Furthermore, after extending the nonlinear integral equation to excitations, we derive scattering amplitudes involving solitons/antisolitons first, and bound states later. The latter case comes out as manifestly related to the Deformed Virasoro Algebra of Shiraishi et al. \cite{SKAO}. Although this nonlinear integral equations framework was contrived to deal with finite geometries, we prove it to be effective for discovering or rediscovering S-matrices. As a particular example, we prove that this unique model furnishes explicitly two S-matrices, proposed respectively by Zamolodchikov \cite{ZAMe} and Lukyanov-Mussardo-Penati \cite{LUK, MP} as plausible scattering description of unknown integrable field theories.Comment: Article, 41 pages, Late

    qq-analogue of modified KP hierarchy and its quasi-classical limit

    Full text link
    A qq-analogue of the tau function of the modified KP hierarchy is defined by a change of independent variables. This tau function satisfies a system of bilinear qq-difference equations. These bilinear equations are translated to the language of wave functions, which turn out to satisfy a system of linear qq-difference equations. These linear qq-difference equations are used to formulate the Lax formalism and the description of quasi-classical limit. These results can be generalized to a qq-analogue of the Toda hierarchy. The results on the qq-analogue of the Toda hierarchy might have an application to the random partition calculus in gauge theories and topological strings.Comment: latex2e, a4 paper 15 pages, no figure; (v2) a few references are adde

    Effect of poling conditions on second harmonic generation in fused silica

    No full text
    A systematic study of the effects of poling time and applied voltage on second harmonic generation (SHG) in thermally poled silica glass reveals that the SH signal is proportional to the square of the applied voltage, and that the speed of the poling process is inversely proportional to the applied voltage. Prior treatment of the samples is found to affect the poling process, and the optimum poling conditions are observed to depend on the poling atmosphere. The mechanism of thermal poling is discussed in the light of these new results

    Integrable Time-Discretisation of the Ruijsenaars-Schneider Model

    Full text link
    An exactly integrable symplectic correspondence is derived which in a continuum limit leads to the equations of motion of the relativistic generalization of the Calogero-Moser system, that was introduced for the first time by Ruijsenaars and Schneider. For the discrete-time model the equations of motion take the form of Bethe Ansatz equations for the inhomogeneous spin-1/2 Heisenberg magnet. We present a Lax pair, the symplectic structure and prove the involutivity of the invariants. Exact solutions are investigated in the rational and hyperbolic (trigonometric) limits of the system that is given in terms of elliptic functions. These solutions are connected with discrete soliton equations. The results obtained allow us to consider the Bethe Ansatz equations as ones giving an integrable symplectic correspondence mixing the parameters of the quantum integrable system and the parameters of the corresponding Bethe wavefunction.Comment: 27 pages, latex, equations.st
    corecore