943 research outputs found
Frequency doubling in Ga:La:S optical glass with microcrystals
Second harmonic generation in gallium-lanthanum-sulphide (Ga:La:S) and GeS2+Ga:La:S glasses is investigated. It is shown that microcrystals of Ga:La:S and of alpha-phase of gallium-sulphide (alpha-Ga2S3), whose presence in the glass matrix is revealed by x-ray diffraction analysis, are responsible for the frequency doubling process
Knizhnik-Zamolodchikov-Bernard equations connected with the eight-vertex model
Using quasiclassical limit of Baxter's 8 - vertex R - matrix, an elliptic
generalization of the Knizhnik-Zamolodchikov equation is constructed. Via
Off-Shell Bethe ansatz an integrable representation for this equation is
obtained. It is shown that there exists a gauge transformation connecting this
equation with Knizhnik-Zamolodchikov-Bernard equation for SU(2)-WZNW model on
torus.Comment: 20 pages latex, macro: tcilate
Glass fibre poling and applications
Recent developments in the application of poled optical fibers to second harmonic generation and electrooptic light modulation are reviewed
From finite geometry exact quantities to (elliptic) scattering amplitudes for spin chains: the 1/2-XYZ
Initially, we derive a nonlinear integral equation for the vacuum counting
function of the spin 1/2-XYZ chain in the {\it disordered regime}, thus
paralleling similar results by Kl\"umper \cite{KLU}, achieved through a
different technique in the {\it antiferroelectric regime}. In terms of the
counting function we obtain the usual physical quantities, like the energy and
the transfer matrix (eigenvalues). Then, we introduce a double scaling limit
which appears to describe the sine-Gordon theory on cylindrical geometry, so
generalising famous results in the plane by Luther \cite{LUT} and Johnson et
al. \cite{JKM}. Furthermore, after extending the nonlinear integral equation to
excitations, we derive scattering amplitudes involving solitons/antisolitons
first, and bound states later. The latter case comes out as manifestly related
to the Deformed Virasoro Algebra of Shiraishi et al. \cite{SKAO}. Although this
nonlinear integral equations framework was contrived to deal with finite
geometries, we prove it to be effective for discovering or rediscovering
S-matrices. As a particular example, we prove that this unique model furnishes
explicitly two S-matrices, proposed respectively by Zamolodchikov \cite{ZAMe}
and Lukyanov-Mussardo-Penati \cite{LUK, MP} as plausible scattering description
of unknown integrable field theories.Comment: Article, 41 pages, Late
-analogue of modified KP hierarchy and its quasi-classical limit
A -analogue of the tau function of the modified KP hierarchy is defined by
a change of independent variables. This tau function satisfies a system of
bilinear -difference equations. These bilinear equations are translated to
the language of wave functions, which turn out to satisfy a system of linear
-difference equations. These linear -difference equations are used to
formulate the Lax formalism and the description of quasi-classical limit. These
results can be generalized to a -analogue of the Toda hierarchy. The results
on the -analogue of the Toda hierarchy might have an application to the
random partition calculus in gauge theories and topological strings.Comment: latex2e, a4 paper 15 pages, no figure; (v2) a few references are
adde
Effect of poling conditions on second harmonic generation in fused silica
A systematic study of the effects of poling time and applied voltage on second harmonic generation (SHG) in thermally poled silica glass reveals that the SH signal is proportional to the square of the applied voltage, and that the speed of the poling process is inversely proportional to the applied voltage. Prior treatment of the samples is found to affect the poling process, and the optimum poling conditions are observed to depend on the poling atmosphere. The mechanism of thermal poling is discussed in the light of these new results
Remarks on the waterbag model of dispersionless Toda Hierarchy
We construct the free energy associated with the waterbag model of dToda.
Also, the relations of conserved densities are investigatedComment: 12 page
Integrable Time-Discretisation of the Ruijsenaars-Schneider Model
An exactly integrable symplectic correspondence is derived which in a
continuum limit leads to the equations of motion of the relativistic
generalization of the Calogero-Moser system, that was introduced for the first
time by Ruijsenaars and Schneider. For the discrete-time model the equations of
motion take the form of Bethe Ansatz equations for the inhomogeneous spin-1/2
Heisenberg magnet. We present a Lax pair, the symplectic structure and prove
the involutivity of the invariants. Exact solutions are investigated in the
rational and hyperbolic (trigonometric) limits of the system that is given in
terms of elliptic functions. These solutions are connected with discrete
soliton equations. The results obtained allow us to consider the Bethe Ansatz
equations as ones giving an integrable symplectic correspondence mixing the
parameters of the quantum integrable system and the parameters of the
corresponding Bethe wavefunction.Comment: 27 pages, latex, equations.st
- …