59 research outputs found
Motion of a sphere through an aging system
We have investigated the drag on a sphere falling through a clay suspension
that has a yield stress and exhibits rheological aging. The drag force
increases with both speed and the rest time between preparation of the system
and the start of the experiment, but there exists a nonzero minimum speed below
which steady motion is not possible. We find that only a very thin layer of
material around the sphere is fluidized when it moves, while the rest of
suspension is deformed elastically. This is in marked contrast to what is found
for yield-stress fluids that do not age.Comment: latex, 4 figure
Dynamics of progressive pore clogging by colloidal aggregates
International audienceThe flow of a suspension through a bottleneck often leads to its obstruction. Such a continuous flow to clogging transition has been well characterized when the constriction width to particle size ratio, W/D, is smaller than 3-4. In such cases, the constriction is either blocked by a single particle that is larger than the constriction width (W/D < 1), or there is an arch formed by several particles that try to enter it together (2 < W/D < 4). For larger W/D ratios, 4 < W/D < 10, the blockage of the constriction is presumed to be due to the successive accumulations of particles. Such a clogging mechanism may also apply to wider pores. The dynamics of this progressive obstruction remains largely unexplored since it is difficult to see through the forming clog and we still do not know how particles accumulate inside the constriction. In this paper, we use particle tracking and image analysis to study the clogging of a constriction/pore by stable colloidal particles. These techniques allow us to determine the shape and the size of all the objects, be they single particles or aggregates, captured inside the pore. We show that even with the rather monodisperse colloidal suspension we used individual particles cannot clog a pore alone. These individual particles can only partially cover the pore surface whilst it is the very small fraction of aggregates present in the suspension that can pile up and clog the pore. We analyzed the dynamics of aggregate motion up to the point of capture within the pore, which helps us to elucidate why the probability of aggregate capture inside the pore is high
Microbial competition in porous environments can select against rapid biofilm growth
Microbes often live in dense communities called biofilms where competition between strains and species is fundamental to both evolution and community function. While biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here we use novel microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates we couple a model of flow-biofilm interaction with a game theory analysis. This shows that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live
Deformation and flow of a two-dimensional foam under continuous shear
We investigate the flow properties of a two-dimensional aqueous foam
submitted to a quasistatic shear in a Couette geometry. A strong localization
of the flow (shear banding) at the edge of the moving wall is evidenced,
characterized by an exponential decay of the average tangential velocity.
Moreover, the analysis of the rapid velocity fluctuations reveals self-similar
dynamical structures consisting of clusters of bubbles rolling as rigid bodies.
To relate the instantaneous (elastic) and time-averaged (plastic) components of
the strain, we develop a stochastic model where irreversible rearrangements are
activated by local stress fluctuations originating from the rubbing of the
wall. This model gives a complete description of our observations and is also
consistent with data obtained on granular shear bands by other groups.Comment: 5 pages, 2 figure
Three-dimensional jamming and flows of soft glassy materials
Various disordered dense systems such as foams, gels, emulsions and colloidal
suspensions, exhibit a jamming transition from a liquid state (they flow) to a
solid state below a yield stress. Their structure, thoroughly studied with
powerful means of 3D characterization, exhibits some analogy with that of
glasses which led to call them soft glassy materials. However, despite its
importance for geophysical and industrial applications, their rheological
behavior, and its microscopic origin, is still poorly known, in particular
because of its nonlinear nature. Here we show from two original experiments
that a simple 3D continuum description of the behaviour of soft glassy
materials can be built. We first show that when a flow is imposed in some
direction there is no yield resistance to a secondary flow: these systems are
always unjammed simultaneously in all directions of space. The 3D jamming
criterion appears to be the plasticity criterion encountered in most solids. We
also find that they behave as simple liquids in the direction orthogonal to
that of the main flow; their viscosity is inversely proportional to the main
flow shear rate, as a signature of shear-induced structural relaxation, in
close similarity with the structural relaxations driven by temperature and
density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm
Etude expérimentale de l'écoulement de produits viscoélastiques sur un disque en rotation
The spreading out of a yield stress fluid on a rotating, during a rotation speed ramp, proceeds in two stages. At the beginning of the ramp, the material behaves like a viscoelastic solid of the Kelvin-Voigt type, and there is a uniform elongation of the sample. Then, starting from a critical rotation speed, a fast circular spreading out begins, one then establishes a simple relation between this critical rotation speed and the yield stress of the material.L'étalement d'un fluide à seuil sur un disque en rotation, soumis à une rampe de vitesse, se déroule en deux étapes. Au début de la rampe, le matériau se comporte comme un solide de type Kelvin-Voigt . il en résulte une élongation uniforme de l'échantillon. Ensuite, à partir d'une vitesse critique, un écoulement rapide débute, on établit alors une relation simple entre cette vitesse critique et le seuil d'écoulement du matériau
- …