7 research outputs found

    Digital simulation and experimental evaluation of the CO2-H(plus) control of pulmonary ventilation

    Get PDF
    Previous models of the CO2-H(+) control of ventilation have been concerned either with the response to CO2 inhalation, or the response to perfusion of the surface of the medulla with mock cerebrospinal fluid having a high P sub CO2. Simulation of both responses with the same model has not been attempted. The purpose of the present study was two fold; first to develop such a model and, second, to obtain experimental data from human subjects for both developing this model and for evaluating this and future models

    Role of the Carotid Chemoreceptors in the Hyperpnea of Exercise in the Cat

    No full text
    The role of the carotid chemoreceptors in the hyperpnea of exercise was investigated. The activity of the sinus nerve of the cat was monitored while the blood supply to the carotid body was controlled independently of the systemic circulation. By this technique, fluctuations in the arterial blood gases during a short interval of exercise induced by electrical stimulation of hindlimb muscles were unable to affect the chemoreceptor activity. While minute ventilation increased by an average of 51%, chemoreccptor discharge was found to be unchanged in 12 experiments, 6 while perfusing with normoxic blood and 6 while perfusing with hypoxic blood. Thus, it must be concluded that alteration of carotid chemoreceptor sensitivity does not occur during artificially induced exercise in anesthetized cats. However, the difference in the time course of ventilation following the initiation of artificially induced exercise between cats and other species does not allow it to be ruled out in other species, including man. Indirect evidence is against such a role
    corecore