496 research outputs found

    Bianchi type II,III and V diagonal Einstein metrics re-visited

    Get PDF
    We present, for both minkowskian and euclidean signatures, short derivations of the diagonal Einstein metrics for Bianchi type II, III and V. For the first two cases we show the integrability of the geodesic flow while for the third case a somewhat unusual bifurcation phenomenon takes place: for minkowskian signature elliptic functions are essential in the metric while for euclidean signature only elementary functions appear

    Parallelisable Heterotic Backgrounds

    Full text link
    We classify the simply-connected supersymmetric parallelisable backgrounds of heterotic supergravity. They are all given by parallelised Lie groups admitting a bi-invariant lorentzian metric. We find examples preserving 4, 8, 10, 12, 14 and 16 of the 16 supersymmetries.Comment: 17 pages, AMSLaTe

    The Spectrum of the Dirac Operator on Coset Spaces with Homogeneous Gauge Fields

    Get PDF
    The spectrum and degeneracies of the Dirac operator are analysed on compact coset spaces when there is a non-zero homogeneous background gauge field which is compatible with the symmetries of the space, in particular when the gauge field is derived from the spin-connection. It is shown how the degeneracy of the lowest Landau level in the recently proposed higher dimensional quantum Hall effect is related to the Atiyah-Singer index theorem for the Dirac operator on a compact coset space.Comment: 25 pages, typeset in LaTeX, uses youngtab.st

    Deformation Quantization of Geometric Quantum Mechanics

    Get PDF
    Second quantization of a classical nonrelativistic one-particle system as a deformation quantization of the Schrodinger spinless field is considered. Under the assumption that the phase space of the Schrodinger field is CC^{\infty}, both, the Weyl-Wigner-Moyal and Berezin deformation quantizations are discussed and compared. Then the geometric quantum mechanics is also quantized using the Berezin method under the assumption that the phase space is CPCP^{\infty} endowed with the Fubini-Study Kahlerian metric. Finally, the Wigner function for an arbitrary particle state and its evolution equation are obtained. As is shown this new "second quantization" leads to essentially different results than the former one. For instance, each state is an eigenstate of the total number particle operator and the corresponding eigenvalue is always 1{1 \over \hbar}.Comment: 27+1 pages, harvmac file, no figure

    Scalar fields on SL(2,R) and H^2 x R geometric spacetimes and linear perturbations

    Full text link
    Using appropriate harmonics, we study the future asymptotic behavior of massless scalar fields on a class of cosmological vacuum spacetimes. The spatial manifold is assumed to be a circle bundle over a higher genus surface with a locally homogeneous metric. Such a manifold corresponds to the SL(2,R)-geometry (Bianchi VIII type) or the H^2 x R-geometry (Bianchi III type). After a technical preparation including an introduction of suitable harmonics for the circle-fibered Bianchi VIII to separate variables, we derive systems of ordinary differential equations for the scalar field. We present future asymptotic solutions for these equations in a special case, and find that there is a close similarity with those on the circle-fibered Bianchi III spacetime. We discuss implications of this similarity, especially to (gravitational) linear perturbations. We also point out that this similarity can be explained by the "fiber term dominated behavior" of the two models.Comment: 23 pages, no figures, to be published in Class. Quant. Gravi

    Explicit Kundt type II and N solutions as gravitational waves in various type D and O universes

    Get PDF
    A particular yet large class of non-diverging solutions which admits a cosmological constant, electromagnetic field, pure radiation and/or general non-null matter component is explicitly presented. These spacetimes represent exact gravitational waves of arbitrary profiles which propagate in background universes such as Minkowski, conformally flat (anti-)de Sitter, Edgar-Ludwig, Bertotti-Robinson, and type D (anti-)Nariai or Plebanski-Hacyan spaces, and their generalizations. All possibilities are discussed and are interpreted using a unifying simple metric form. Sandwich and impulsive waves propagating in the above background spaces with different geometries and matter content can easily be constructed. New solutions are identified, e.g. type D pure radiation or explicit type II electrovacuum waves in (anti-)Nariai universe. It is also shown that, in general, there are no conformally flat Einstein-Maxwell fields with a non-vanishing cosmological constant.Comment: 17 pages, LaTeX 2e. v2: added two references concerning generalized Kerr-Schild transformations, minor changes in the tex

    Rotating perfect fluid sources of the NUT metric

    Full text link
    Locally rotationally symmetric perfect fluid solutions of Einstein's gravitational equations are matched along the hypersurface of vanishing pressure with the NUT metric. These rigidly rotating fluids are interpreted as sources for the vacuum exterior which consists only of a stationary region of the Taub-NUT space-time. The solution of the matching conditions leaves generally three parameters in the global solution. Examples of perfect fluid sources are discussed.Comment: 8 pages, late

    All supersymmetric solutions of minimal supergravity in six dimensions

    Full text link
    A general form for all supersymmetric solutions of minimal supergravity in six dimensions is obtained. Examples of new supersymmetric solutions are presented. It is proven that the only maximally supersymmetric solutions are flat space, AdS_3 x S^3 and a plane wave. As an application of the general solution, it is shown that any supersymmetric solution with a compact horizon must have near-horizon geometry R^{1,1} x T^4, R^{1,1} x K3 or identified AdS_3 x S^3.Comment: 40 pages. v2: two references adde

    Biliary effects of liraglutide and sitagliptin, a 12-week randomized placebo-controlled trial in type 2 diabetes patients

    Get PDF
    Aims: Treatment with glucagon-like peptide (GLP)-1 receptor agonists or dipeptidyl peptidase (DPP)-4 inhibitors might increase gallstone formation; however, the mechanisms involved are unknown. We aimed to assess the effects of these drugs on gallbladder volume and bile acid profile. Materials and methods: A total of 57 type 2 diabetes patients (mean±SD age, 62.8±6.9years; BMI, 31.8±4.1kg/m2; HbA1c, 7.3%±0.6%), treated with metformin and/or sulfonylureas, were included in this 12-week randomized, placebo-controlled, double-blind, single-centre trial between July 2013 and August 2015 at the VU University Medical Center, the Netherlands. Patients received the GLP-1 receptor agonist liraglutide, the DPP-4 inhibitor sitagliptin or matching placebo for 12weeks. Gallbladder fasting volume and ejection fraction were measured using ultrasonography after a high-fat meal. Serum bile acids were measured in the fasting and postprandial state and in faecal samples. The trial was registered at ClinicalTrials.gov (NCT01744236). Results: Neither liraglutide nor sitagliptin had an effect on gallbladder fast
    corecore