397 research outputs found

    Measuring the effective phonon density of states of a quantum dot

    Get PDF
    We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from longitudinal acoustic phonons, and identifies the reason for the hitherto unexplained difference between non-resonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot. This quantity determines all phonon dephasing properties of the system and is found to be described well by a theory of bulk phonons.Comment: 5 pages, 3 figures, submitte

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte

    Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide

    Full text link
    A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β\beta-factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43±0.04%\beta = 98.43 \pm 0.04\% for a quantum dot coupled to a photonic-crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5\eta = 62.7 \pm 1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β\beta-factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic-crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction

    Single-photon nonlinear optics with a quantum dot in a waveguide

    Get PDF
    Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures

    Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics:Paper

    Get PDF
    We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes-Cummings model, while systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to coupling of other exciton lines to the cavity and interference of different propagation paths towards the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities we observe an anti crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multiexcition complexes giving rise to collective emission effects.Comment: 14 pages, 5 figures, submitte

    Cavity Quantum Electrodynamics with Anderson-localized Modes

    Full text link
    A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. Highly engineered optical cavities are generally implemented requiring nanoscale fabrication precision. We demonstrate a fundamentally different approach in which disorder is used as a resource rather than a nuisance. We generate strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide is enhanced by a factor of 15 on resonance with the Anderson-localized mode and 94 % of the emitted single-photons couple to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics offering an approach to inherently disorder-robust quantum information devices

    Size-Dependence of the Wavefunction of Self-Assembled Quantum Dots

    Get PDF
    The radiative and non-radiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results and a theoretical model we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics experiments.Comment: 5 pages, 3 figure

    Impact Ionization in ZnS

    Full text link
    The impact ionization rate and its orientation dependence in k space is calculated for ZnS. The numerical results indicate a strong correlation to the band structure. The use of a q-dependent screening function for the Coulomb interaction between conduction and valence electrons is found to be essential. A simple fit formula is presented for easy calculation of the energy dependent transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for publication in PRB as brief Report (LaTeX source replaces raw-postscript file
    • …
    corecore