19 research outputs found

    First results from the Cluster wideband plasma wave investigation

    No full text
    International audienceIn this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1) whistlers, (2) chorus, and (3) auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The frequency-time structure of this radiation usually shows a very good one-to-one correspondence between the various spacecraft. By using the microsecond timing available at the NASA Deep Space Net-work, very-long-baseline radio astronomy techniques have been used to determine the source of the auroral kilometric radiation. One event analyzed using this technique shows a very good correspondence between the inferred source location, which is assumed to be at the electron cyclotron frequency, and a bright spot in the aurora along the magnetic field line through the source

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Electric field scales at quasi-perpendicular shocks

    No full text
    This paper investigates the short scale structures that are observed in the electric field during crossings of the quasi-perpendicular bow shock using data from the Cluster satellites. These structures exhibit large amplitudes, as high as 70 m Vm<sup>-1</sup> and so make a significant contribution to the overall change in potential at the shock front. It is shown that the scale size of these short-lived electric field structures is of the order of a few <i>c</i>/ω<sub><i>pe</i></sub>. The relationships between the scale size and the upstream Mach number and θ<sub><i>Bn</i></sub> are studied. It is found that the scale size of these structures decreases with increasing plasma β and as θ<sub><i>Bn</i></sub>→90°. The amplitude of the spikes remains fairly constant with increasing <i>M<sub>a</sub></i> and appears to increase as θ<sub><i>Bn</i></sub>→90°

    Digital Wave Processor Data in the Cluster Active Archive

    No full text
    No description supplie

    Lower hybrid waves at the shock front: a reassessment

    No full text
    The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=Vik⊥) and magnetised electrons (ω=Vek||). In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population

    Latitude and local time dependence of ULF wave power at the magnetopause,: A Cluster-Double Star study

    No full text
    International audience[1] Strong ULF wave activity has been observed at magnetopause crossings over a long time. Those turbulent like waves are possibly one of the contributors to particle penetration from the solar wind to the magnetosphere through the magnetopause. Spatio Temporal Analysis of Field Fluctuations wave experiments onboard Cluster and Double Star TC1 spacecraft permit the comparison of those waves during quasi-simultaneous magnetopause crossings, some being at the same local time but at different latitude, the TC1 Double Star orbit being nearly equatorial and the Cluster orbit being polar. From a survey of the first half of year 2004 and beginning of 2005 data, 23 coordinated magnetopause crossings have been identified, out of which 11 are at the same local time, for which the wave power density has been calculated. No clear dependence in local time has been found; in particular, the wave power density is not stronger at noon in the vicinity of the subsolar point than at other local times, the morning hour data showing more dispersed values than afternoon ones. For most of the events occurring at the same local time, the wave power density measured by Double Star (at low latitude) is stronger than the one measured by the Cluster spacecraft (at much higher latitude). If those first results were to be confirmed, it could imply a predominant role of the equatorial plane in the solar wind/ magnetosphere coupling via ULF wave turbulence, with no preference for the subsolar region. Citation: Cornilleau-Wehrlin, N. (2008), Latitude and local time dependence of ULF wave power at the magnetopause: A Cluster-Double Star study

    The Digital Wave-Processing Experiment on Cluster

    No full text
    The wide variety of geophysical plasmas that will be investigated by the Cluster mission contain waves with a frequency range from DC to over 100 kHz with both magnetic and electric components. The characteristic duration of these waves extends from a few milliseconds to minutes and a dynamic range of over 90 dB is desired. All of these factors make it essential that the on-board control system for the Wave-Experiment Consortium (WEC) instruments be flexible so as to make effective use of the limited spacecraft resources of power and telemetry-information bandwidth. The Digital Wave Processing Experiment, (DWP), will be flown on Cluster satellites as a component of the WEC. DWP will coordinate WEC measurements as well as perform particle correlations in order to permit the direct study of wave/particle interactions. The DWP instrument employs a novel architecture based on the use of transputers with parallel processing and re-allocatable tasks to provide a high-reliability system. Members of the DWP team are also providing sophisticated electrical ground support equipment, for use during development and testing by the WEC. This is described further in Pedersen et al. (this issue)
    corecore