83 research outputs found

    Low-Dose Near-Infrared Light-Activated Mitochondria-Targeting Photosensitizers for PDT Cancer Therapy

    Full text link
    Phthalocyanines (Pcs) are promising candidates for photodynamic therapy (PDT) due to their absorption in the phototherapeutic window. However, the highly aromatic Pc core leads to undesired aggregation and decreased reactive oxygen species (ROS) production. Therefore, short PEG chain functionalized A3B type asymmetric Pc photosensitizers (PSs) were designed in order to decrease aggregation and increase the aqueous solubility. Here we report the synthesis, characterization, optical properties, cellular localization, and cytotoxicity of three novel Pc-based agents (LC31, MLC31, and DMLC31Pt). The stepwise functionalization of the peripheral moieties has a strong effect on the distribution coefficient (logP), cellular uptake, and localization, as well as photocytotoxicity. Additional experiments have revealed that the presence of the malonic ester moiety in the reported agent series is indispensable in order to induce photocytotoxicity. The best-performing agent, MLC31, showed mitochondrial targeting and an impressive phototoxic index (p.i.) of 748 in the cisplatin-resistant A2780/CP70 cell line, after a low-dose irradiation of 6.95 J/cm2. This is the result of a high photocytotoxicity (IC50 = 157 nM) upon irradiation with near-infrared (NIR) light, and virtually no toxicity in the dark (IC50 = 117 μM). Photocytotoxicity was subsequently determined under hypoxic conditions. Additionally, a preliminarily pathway investigation of the mitochondrial membrane potential (MMP) disruption and induction of apoptosis by MLC31 was carried out. Our results underline how agent design involving both hydrophilic and lipophilic peripheral groups may serve as an effective way to improve the PDT efficiency of highly aromatic PSs for NIR light-mediated cancer therapy

    Cisplatin induces loop structures and condensation of single DNA molecules

    Get PDF
    Structural properties of single λ DNA treated with anti-cancer drug cisplatin were studied with magnetic tweezers and AFM. Under the effect of low-concentration cisplatin, the DNA became more flexible, with the persistence length decreased significantly from ∼52 to 15 nm. At a high drug concentration, a DNA condensation phenomenon was observed. Based on experimental results from both single-molecule and AFM studies, we propose a model to explain this kind of DNA condensation by cisplatin: first, di-adducts induce local distortions of DNA. Next, micro-loops of ∼20 nm appear through distant crosslinks. Then, large aggregates are formed through further crosslinks. Finally, DNA is condensed into a compact globule. Experiments with Pt(dach)Cl2 indicate that oxaliplatin may modify the DNA structures in the same way as cisplatin. The observed loop structure formation of DNA may be an important feature of the effect of platinum anti-cancer drugs that are analogous to cisplatin in structure

    Beitr�ge zur Entwicklung psychotroper Stoffe, 1. Mitt.: Neuartige Ringsysteme

    No full text

    Zur Theorie der Verdampfungsgeschwindigkeit fester K�rper

    No full text

    Charge dependent substrate activity of C3' and N3 functionalized, organometallic Technetium and Rhenium-labeled thymidine derivatives toward human thymidine kinase 1

    Full text link
    Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as F-18]3'-fluoro-3'-deoxythymidine (F-18]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = Tc-99m, Re). The click chemistry approach enabled complexes with different structures and overall charges to he synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%)

    Flexible Montageautomatisierung mit Industrierobotern

    No full text
    Die neuen Forderungen des Marktes sowie der Wunsch, rascher auf Kundenwünsche reagieren zu können, verlangen von den Unternehmen flexiblere Automatisierungsmittel. Das Institut für Industrielle Fertigung und Fabrikbetrieb (IFF) der Universität Stuttgart sowie das Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA), gleichfalls in Stuttgart, sehen als eine Antwort auf diese geänderten Randbedingungen die Chance des flexiblen Montageroboters

    New chiral hypervalent iodine compounds in asymmetric synthesis

    Full text link
    corecore