12,987 research outputs found

    Hydrodynamics of a new concept of primary containment by energy absorption

    Get PDF
    Fluid dynamical analysis for idealized reactors system with spherical symmetry determines the effect which the destructive component of a nuclear accident produces on primary containment structures. Steel strands surrounding the reactor cavity in the biological shield exhibit plastic deformation to achieve the energy absorption

    Correlated Gaussian method for dilute bosonic systems

    Full text link
    The weakly interacting trapped Bose gases have been customarily described using the mean-field approximation in the form of the Gross-Pitaevskii equation. The mean-field approximation, however, has certain limitations, in particular it can not describe correlations between particles. We introduce here an alternative variational approach, based on the correlated Gaussian method, which in its simplest form is as fast and simple as the mean-field approximation, but which allows successive improvements of the trial wave-function by including correlations between particles.Comment: 9 pages, Workshop on Nuclei and Mesoscopic Physics, NSCL MSU, 200

    Generation of optimum vertical profiles for an advanced flight management system

    Get PDF
    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined

    Phase space shifts in command structures in networked systems

    No full text
    This paper presents the rationale behind an important enhancement to the NATO SAS-050 approach space, combined with empirical results which take advantage of these enhancements. In Part 1 a new theoretical legacy for the NATO model is presented. This legacy inspires a number of developments which allow live data to be plotted into it, and we demonstrate that the model is well able to discriminate between alternative C2 structures. Part 2 illustrates this feature with multinational data from the ELICIT community. It is surprising to see that teams in both C2 and Edge conditions operate in broadly the same area of the phase space cube. The structure of the pre-ordained ELICIT ‘classic C2’ hierarchy and the deterministic nature of the shared task are put forward as explanations for this, and as future enhancements to the ELICIT paradigm

    Water impact analysis of space shuttle solid rocket motor by the finite element method

    Get PDF
    Preliminary analysis showed that the doubly curved triangular shell elements were too stiff for these shell structures. The doubly curved quadrilateral shell elements were found to give much improved results. A total of six load cases were analyzed in this study. The load cases were either those resulting from a static test using reaction straps to simulate the drop conditions or under assumed hydrodynamic conditions resulting from a drop test. The latter hydrodynamic conditions were obtained through an emperical fit of available data. Results obtained from a linear analysis were found to be consistent with results obtained elsewhere with NASTRAN and BOSOR. The nonlinear analysis showed that the originally assumed loads would result in failure of the shell structures. The nonlinear analysis also showed that it was useful to apply internal pressure as a stabilizing influence on collapse. A final analysis with an updated estimate of load conditions resulted in linear behavior up to full load
    corecore