169 research outputs found

    Geographical differences in the relationship between total dissolved solids and electrical conductivity in South African rivers

    Get PDF
    Electrical conductivity (EC) is a useful surrogate for total dissolved solids (TDS). EC is more rapidly and easily measurable with reasonably-priced equipment. However, as an indirect measure EC is subject to uncertainties that are not always apparent to the user. We set out to investigate the relationship between TDS and EC in 144 643 sample results availableon the Department of Water Affairs water quality database. TDS is   calculated as the sum of the major solutes determined by laboratory  analysis and EC is a measurement in a flow cell. The median TDS:EC ratio for 332 high priority sites was 7 mg/.: 1 mS/m. Regional differences  ranged from 4.8 to 8.6. Investigation of 38 of these sites using Maucha diagrams suggested that the differences are related to the dominant  major ions, with sodium chloride waters having a lower TDS:EC conversion factor than calcium bicarbonate waters. The practical application of these findings is that users of EC meters should not simply apply a blanket conversion factor, but need to select an applicable factor for the river  system in which they are measuring.Keywords: conversion factors, electrical conductivity, field instruments, rivers, total dissolved solids, water qualit

    Phase--coherence Effects in Antidot Lattices: A Semiclassical Approach to Bulk Conductivity

    Full text link
    We derive semiclassical expressions for the Kubo conductivity tensor. Within our approach the oscillatory parts of the diagonal and Hall conductivity are given as sums over contributions from classical periodic orbits in close relation to Gutzwiller's trace formula for the density of states. Taking into account the effects of weak disorder and temperature we reproduce recently observed anomalous phase coherence oscillations in the conductivity of large antidot arrays.Comment: 11 pages, 2 figures available under request, RevTe

    Duality Relation among Periodic Potential Problems in the Lowest Landau Level

    Full text link
    Using a momentum representation of a magnetic von Neumann lattice, we study a two-dimensional electron in a uniform magnetic field and obtain one-particle spectra of various periodic short-range potential problems in the lowest Landau level.We find that the energy spectra satisfy a duality relation between a period of the potential and a magnetic length. The energy spectra consist of the Hofstadter-type bands and flat bands. We also study the connection between a periodic short-range potential problem and a tight-binding model.Comment: 6 pages, 3 figures, final version to appear in PR

    Manifestation of the Hofstadter butterfly in far-infrared absorption

    Full text link
    The far-infrared absorption of a two-dimensional electron gas with a square-lattice modulation in a perpendicular constant magnetic field is calculated self-consistently within the Hartree approximation. For strong modulation and short period we obtain intra- and intersubband magnetoplasmon modes reflecting the subbands of the Hofstadter butterfly in two or more Landau bands. The character of the absorption and the correlation of the peaks to the number of flux quanta through each unit cell of the periodic potential depends strongly on the location of the chemical potential with respect to the subbands, or what is the same, on the density of electrons in the system.Comment: RevTeX file + 4 postscript figures, to be published Phys. Rev. B Rapid Com

    Bloch Electrons in a Magnetic Field - Why Does Chaos Send Electrons the Hard Way?

    Full text link
    We find that a 2D periodic potential with different modulation amplitudes in x- and y-direction and a perpendicular magnetic field may lead to a transition to electron transport along the direction of stronger modulation and to localization in the direction of weaker modulation. In the experimentally accessible regime we relate this new quantum transport phenomenon to avoided band crossing due to classical chaos.Comment: 4 pages, 3 figures, minor modifications, PRL to appea

    Magnetization in short-period mesoscopic electron systems

    Full text link
    We calculate the magnetization of the two-dimensional electron gas in a short-period lateral superlattice, with the Coulomb interaction included in Hartree and Hartree-Fock approximations. We compare the results for a finite, mesoscopic system modulated by a periodic potential, with the results for the infinite periodic system. In addition to the expected strong exchange effects, the size of the system, the type and the strength of the lateral modulation leave their fingerprints on the magnetization.Comment: RevTeX4, 10 pages with 14 included postscript figures To be published in PRB. Replaced to repair figure

    Signature of Chaotic Diffusion in Band Spectra

    Full text link
    We investigate the two-point correlations in the band spectra of spatially periodic systems that exhibit chaotic diffusion in the classical limit. By including level pairs pertaining to non-identical quasimomenta, we define form factors with the winding number as a spatial argument. For times smaller than the Heisenberg time, they are related to the full space-time dependence of the classical diffusion propagator. They approach constant asymptotes via a regime, reflecting quantal ballistic motion, where they decay by a factor proportional to the number of unit cells. We derive a universal scaling function for the long-time behaviour. Our results are substantiated by a numerical study of the kicked rotor on a torus and a quasi-one-dimensional billiard chain.Comment: 8 pages, REVTeX, 5 figures (eps

    Quantum Hall effect in a p-type heterojunction with a lateral surface quantum dot superlattice

    Full text link
    The quantization of Hall conductance in a p-type heterojunction with lateral surface quantum dot superlattice is investigated. The topological properties of the four-component hole wavefunction are studied both in r- and k-spaces. New method of calculation of the Hall conductance in a 2D hole gas described by the Luttinger Hamiltonian and affected by lateral periodic potential is proposed, based on the investigation of four-component wavefunction singularities in k-space. The deviations from the quantization rules for Hofstadter "butterfly" for electrons are found, and the explanation of this effect is proposed. For the case of strong periodic potential the mixing of magnetic subbands is taken into account, and the exchange of the Chern numbers between magnetic subands is discussed.Comment: 12 pages, 5 figures; reported at the 15th Int. Conf. on High Magnetic Fields in Semicond. Phys. (Oxford, UK, 2002

    Hall conductance of Bloch electrons in a magnetic field

    Full text link
    We study the energy spectrum and the quantized Hall conductance of electrons in a two-dimensional periodic potential with perpendicular magnetic field WITHOUT neglecting the coupling of the Landau bands. Remarkably, even for weak Landau band coupling significant changes in the Hall conductance compared to the one-band approximation of Hofstadter's butterfly are found. The principal deviations are the rearrangement of subbands and unexpected subband contributions to the Hall conductance.Comment: to appear in PRB; Revtex, 9 pages, 5 postscript figures; figures with better resolution may be obtained from http://www.chaos.gwdg.d

    Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Assessment of Substrate for Ventricular Tachycardia With Hemodynamic Compromise.

    Get PDF
    Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials
    corecore