718 research outputs found

    Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries

    Get PDF
    The importance of quantum effects for exotic nuclear shapes is demonstrated. Based on the example of a sheet of nuclear matter of infinite lateral dimensions but finite thickness, it is shown that the quantization of states in momentum space, resulting from the confinement of the nucleonic motion in the conjugate geometrical space, generates a strong resistance against such a confinement and generates restoring forces driving the system towards compact geometries. In the liquid-drop model, these quantum effects are implicitly included in the surface energy term, via a choice of interaction parameters, an approximation that has been found valid for compact shapes, but has not yet been scrutinized for exotic shapes.Comment: 9 pages with 3 figure

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Can the magnetic moment contribution explain the A_y puzzle?

    Get PDF
    We evaluate the full one-photon-exchange Born amplitude for NdNd scattering. We include the contributions due to the magnetic moment of the proton or neutron, and the magnetic moment and quadrupole moment of the deuteron. It is found that the inclusion of the magnetic-moment interaction in the theoretical description of the NdNd scattering observables cannot resolve the long-standing AyA_y puzzle.Comment: 7 pages, 2 Postscript figures; to appear in Phys.Rev.

    Electrical Control of 2D Magnetism in Bilayer CrI3

    Full text link
    The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states which exhibit spin-layer locking, leading to a remarkable linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results pave the way for exploring new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.Comment: To appear in Nature Nanotechnolog

    C720

    Get PDF
    F. Robert Henderson et al., Increasing Eastern Bluebirds in Kansas, Kansas State University, November 1990

    Control of Dephasing and Phonon Emission in Coupled Quantum Dots

    Full text link
    We predict that phonon subband quantization can be detected in the non-linear electron current through double quantum dot qubits embedded into nano-size semiconductor slabs, acting as phonon cavities. For particular values of the dot level splitting Δ\Delta, piezo-electric or deformation potential scattering is either drastically reduced as compared to the bulk case, or strongly enhanced due to phonon van Hove singularities. By tuning Δ\Delta via gate voltages, one can either control dephasing, or strongly increase emission into phonon modes with characteristic angular distributions.Comment: 4 pages, 3 figures, accepted for publication as Rapid Comm. in Phys. Rev.

    Transport and Boundary Scattering in Confined Geometries: Analytical Results

    Full text link
    We utilize a geometric argument to determine the effects of boundary scattering on the carrier mean-free path in samples of various cross sections. Analytic expressions for samples with rectangular and circular cross sections are obtained. We also outline a method for incorporating these results into calculations of the thermal conductivity.Comment: 35 pages, Late
    • …
    corecore