102 research outputs found

    Peptide Mass Spectra from Micrometer-Thick Ice Films Produced with Femtosecond Pulses

    Get PDF
    We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset. Our findings show that substrate choice and irradiation wavelength have a minor impact on signal intensity once the preparation protocol is optimized. However, if the temperature is increased from βˆ’140 to 0 Β°C, which is accompanied by ice film thinning, a somehow complex picture of analyte desorption and ionization is recognizable, which has not been described in the literature yet. Under cryogenic conditions (βˆ’140 Β°C), obtaining a signal is only possible from isolated sweet spots across the film. If the thin ice film is between βˆ’100 and βˆ’70 Β°C of temperature, these sweet spots appear more frequently. Ice sublimation triggered by temperatures above βˆ’70 Β°C leads to an intense and robust signal onset that could be maintained for several hours. In addition to the above findings, we notice that a vibrant fragmentation pattern produced is strikingly similar with both wavelengths. Our findings suggest that while following an optimized protocol, femtosecond mass spectrometry has excellent potential to analyze small organic molecules and peptides with a mass range of up to 2.5 kDa in aqueous solution without any matrix, as employed in matrix-assisted laser desorption/ionization (MALDI) or any substrate surface modification, found in surface-assisted laser desorption/ionization (SALDI)

    An image classification approach to analyze the suppression of plant immunity by the human pathogen <it>Salmonella</it> Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The enteric pathogen <it>Salmonella</it> is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by <it>Salmonella</it> is an active infection process. <it>Salmonella</it> changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by <it>Salmonella</it> infection on <it>Arabidopsis</it>.</p> <p>Results</p> <p>The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic <it>E. coli</it> and the plant pathogen <it>Pseudomonas syringae</it> and used to study the interaction between plants and <it>Salmonella</it> wild type and T3SS mutants. We proved that T3SS mutants of <it>Salmonella</it> are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels.</p> <p>Conclusion</p> <p>This report presents an automatic pixel-based classification method for detecting β€œunhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium <it>Salmonella</it> Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.</p

    Clean and As-covered zinc-blende GaN (001) surfaces: Novel surface structures and surfactant behavior

    Full text link
    We have investigated clean and As-covered zinc-blende GaN (001) surfaces, employing first-principles total-energy calculations. For clean GaN surfaces our results reveal a novel surface structure very different from the well-established dimer structures commonly observed on polar III-V (001) surfaces: The energetically most stable surface is achieved by a Peierls distortion of the truncated (1x1) surface rather than through addition or removal of atoms. This surface exhibits a (1x4) reconstruction consisting of linear Ga tetramers. Furthermore, we find that a submonolayer of arsenic significantly lowers the surface energy indicating that As may be a good surfactant. Analyzing surface energies and band structures we identify the mechanisms which govern these unusual structures and discuss how they might affect growth properties.Comment: 4 pages, 3 figures, to be published in Appears in Phys. Rev. Lett. (in print). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip

    Get PDF
    Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55β€…Β΅g of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unΒ­explored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens

    The HARE chip for efficient time-resolved serial synchrotron crystallography

    No full text
    Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided

    Millisecond cryo-trapping by the spitrobot crystal plunger simplifies time-resolved crystallography

    Get PDF
    We introduce the spitrobot, a protein crystal plunger, enabling reaction quenching via cryo-trapping with millisecond time-resolution. Canonical micromesh loops are mounted on an electropneumatic piston, reactions are initiated via the liquid application method (LAMA), and finally intermediate states are cryo-trapped in liquid nitrogen. We demonstrate binding of several ligands in microcrystals of three enzymes, and trapping of reaction intermediates and conformational changes in macroscopic crystals of tryptophan synthase

    Transgenerational Stress Memory Is Not a General Response in Arabidopsis

    Get PDF
    Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR) events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions

    The Dark Side of the Salad: Salmonella typhimurium Overcomes the Innate Immune Response of Arabidopsis thaliana and Shows an Endopathogenic Lifestyle

    Get PDF
    Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracelullar cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition

    Turning the Table: Plants Consume Microbes as a Source of Nutrients

    Get PDF
    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles
    • …
    corecore