775 research outputs found

    E-MORB glasses from the Gakkel Ridge (Arctic Ocean) at 87°N: evidence for the Earth's most northerly volcanic activity

    Get PDF
    During the ARCTIC '91 expedition aboard RV Polarstern (ARK VIII/3) to the Central Arctic Ocean, a box corer sample on the Gakkel Ridge at 87 degrees N and 60 degrees E yielded a layer of sand-sized, dark brown volcanic glass shards at the surface of the sediment core. These shards have been investigated by petrographic, mineralogical, geochemical and radiogenic isotope methods. The nearly vesicle-free and aphyric glass shards bear only minute microphenocrysts of magnesiochromite and olivine (Fo(88-89)). Most glasses are fresh, although some show signs of incipient low-temperature alteration. From their shapes and sizes, the glass shards most likely formed by spalling of glassy rinds of a nearby volcanic outcrop. Geochemically, the glasses are relatively unfractionated tholeiites with E-MORB trace element compositions. Thus, they are quite similar to the previously investigated ARK IV/3-11-370-5 basalts from 86 degrees N. The Nd and Sr isotopic ratios of PS 2167-2 glasses are significantly lower than for ARK IV/3-11-370-5 basalts and suggest an isotopically heterogeneous mantle source of Gakkel Ridge MORE between 86 degrees and 87 degrees N. The positive Delta-8/4 Pb value (similar to 16) and high Sr-87/Sr-86 ratio (0.70270), found for PS 2167-2 glasses are similar to that of ARK IV/3-11-370-5 basalts and show the influence of the DUPAL isotopic anomaly in the high Arctic mantle. These results argue against the presence of an 'anti-DUPAL anomaly' in the mantle below the North Pole region and simple models of whole-mantle convection

    Ocean Acidification Accelerates Reef Bioerosion

    Get PDF
    In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO2) in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process – biologically induced carbonate dissolution via bioerosion – has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia’s Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO2 confirms a significant enforcement of the sponges’ bioerosion capacity with increasing pCO2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation

    Form Geometry and the 'tHooft-Plebanski Action

    Get PDF
    Riemannian geometry in four dimensions, including Einstein's equations, can be described by means of a connection that annihilates a triad of two-forms (rather than a tetrad of vector fields). Our treatment of the conformal factor of the metric differs from the original presentation of this result, due to 'tHooft. In the action the conformal factor now appears as a field to be varied.Comment: 12pp, LaTe

    Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data

    Get PDF
    Serpentinized peridotite and gabbronorite represent the host rocks to the active, ultramafic-hosted Logatchev hydrothermal field at the Mid-Atlantic Ridge. We use trace element, δ18O and 87Sr/86Sr data from bulk rock samples and mineral separates in order to constrain the controls on the geochemical budget within the Logatchev hydrothermal system. The trace element data of serpentinized peridotite show strong compositional variations indicating a range of processes. Some peridotites experienced geochemical modifications associated with melt-rock interaction processes prior to serpentinization, which resulted in positive correlations of increasing high field strength element (HFSE) concentrations and light rare earth element (LREE) contents. Other serpentinites and lizardite mineral separates are enriched in LREE, lacking a correlation with HFSE due to interaction with high-temperature, black-smoker type fluids. The enrichment of serpentinites and lizardite separates in trace elements, as well as locally developed negative Ce-anomalies, indicate that interaction with low-T ambient seawater is another important process in the Logatchev hydrothermal system. Hence, mixing of high-T hydrothermal fluids during serpentinization and/or re-equilibration of O-isotope signatures during subsequent low-T alteration is required to explain the trace element and δ18O temperature constraints. Highly radiogenic 87Sr/86Sr signatures of serpentinite and lizardite separates provide additional evidence for interaction with seawater-derived fluids. Sparse talc alteration at the Logatchev site are most likely caused by Si-metasomatism of serpentinite associated with the emplacement of shallow gabbro intrusion(s) generating localized hydrothermal circulation. In summary the geochemistry of serpentinites from the Logatchev site document subsurface processes and the evolution of a seafloor ultramafic hydrothermal system

    Разработка программы продвижения продукции фирмы

    Get PDF
    Объектом иследования является - ООО" Аксиом" , как торговая организация, работающая на рынке часов фэшн-направления. Цель работы - разработка программы продвижения часов фэшн-направления на рынке города Новосибирска. В процессе исследования: проанализировано состояние рынка часов города Новосибирска; проведено исследование отношения потребителей к часам фэшн-направления, мотивов их покупки, покупательского поведения; проведен анализ руночной среды и коммуникационной деятельности ООО " Аксиом" и сети "X-time"; В резульате исследования была разработана " Программа продвижения часов фэшн-направленияна рынке города Новосибирска".The object of research - Company " Axiom " , as a trade organization that works on the market hours fashion-direction . The purpose work- program development promotion hours fashion- direction of the city of Novosibirsk market. During research : analyzed the state of the market hours of the city of Novosibirsk ; Swipe study of consumer attitudes to watch the fashion trends , reasons for their purchases of consumer behavior ; Swipe analysis runochnoy media and communication company " Axiom " and network "X-time"; The program of promotion watches fashion napravleniyana Novosibirsk market " was developed in the end of research

    Geochemistry of surface sediments from the mid-oceanic Kolbeinsey Ridge, north of Iceland

    Get PDF
    In order to assess recent submarine volcanic contributions to the sediments from the active Kolbeinsey Ridge, surface samples were analyzed chemically. The contribution of major and trace elements studied differ within the study area. A statistical analysis of the geochemical variables using factor analysis and cluster method allows to distinguish possible sample groups. Cluster method identifies three distinct sediment groups located in different areas of sedimentation. Group 1 is characterized by highest contents of Fe2O3, V, Co, Ni, Cu and Zn demonstrating the input of volcaniclastic material. Group 2 comprises high values of CaCO3, CaO and Sr representing biogenic carbonate. Group 3 is characterized by the elements K, Rb, Cs, La and Pb indicating the terrigenous component. The absolute percentage of the volcanic, biogenic and terrigenous components in the bulk sediments was calculated by using a normative sediment method. The highest volcanic component (> 60% on a carbonate free basis) is found on the ridge crest. The biogenic component is highest (10–30%) in the eastern part of the Spar Fracture Zone influenced by the East Iceland Current. Samples from the western and southeastern region of the study area contain more than 90% of terrigenous component which appears to be mainly controlled by input of ice-rafted debris

    Phonon and Elastic Instabilities in MoC and MoN

    Full text link
    We present several results related to the instability of MoC and MoN in the B1 (sodium chloride) structure. These compounds were proposed as potential superconductors with moderately high transition temperatures. We show that the elastic instability in B1-structure MoN, demonstrated several years ago, persists at elevated pressures, thus offering little hope of stabilizing this material without chemical doping. For MoC, another material for which stoichiometric fabrication in the B1-structure has not proven possible, we find that all of the cubic elastic constants are positive, indicating elastic stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as well), further illustrating the rich behavior of carbo-nitride materials. We also present additional electronic structure results for several transition metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in the properties of these materials. Deviations from strict electron counting dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR

    Sponge bioerosion accelerated by ocean acidification across species and latitudes?

    Get PDF
    In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure (pCO(2)) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO(2) was quantified with 0.08-0.1 kg m(-2) year(-1). Chemical bioerosion was positively correlated with increasing pCO(2), with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems
    corecore