88 research outputs found

    Measurement of Martian boundary layer winds by the displacement of jettisoned lander hardware

    Get PDF
    Abstract Martian boundary layer wind speed and direction measurements, from a variety of locations, seasons and times, are provided. For each lander sent to Mars over the last four decades a unique record of the winds blowing during their descent is preserved at each landing site. By comparing images acquired from orbiting spacecraft of the impact points of jettisoned hardware, such as heat shields and parachutes, to a trajectory model the winds can be measured. We start our investigations with the Viking lander 1 mission and end with Schiaparelli. In-between we extract wind measurements based on observations of the Beagle 2, Spirit, Opportunity, Phoenix and Curiosity landing sites. With one exception the wind at each site during the lander’s descent were found to be   20 m s − 1 ), blowing from the north-west was required at a high altitude ( > 2 km) together with a gust close to the surface ( < 500 m altitude) originating from the north. All in all our investigations yielded a total of ten unique wind measurements in the PBL. One each from the Viking landers and one each from Beagle 2, Spirit, Opportunity and Schiaparelli. Two wind measurements, one above about 1 km altitude and one below, were possible from observations of the Curiosity and Phoenix landing site. Our findings are consistent with a turbulent PBL in the afternoon and calm PBL in the morning. When comparing our results to a GCM we found a good match in wind direction but not for wind speed. The information provided here makes available wind measurements previously unavailable to Mars atmosphere modellers and investigators.Peer reviewe

    Surface Energy Fluxes and Temperatures at Jezero Crater, Mars

    Get PDF
    Diurnal ground surface and air temperatures (Tg, Ta) and the five major surface energy budget fluxes are displayed as derived from M2020 mission observations and from column model simulations in two extreme cases (low and high diurnal Tg-variation) along the Perseverance rover track in the Jezero crater. In both cases the fluxes and Tg are well modeled when using diurnally variable apparent ground thermal inertia I derived via a Fourier series method from the hourly observations. Hence the measurements, the diagnostic method and the model results are consistent with high- and low-I nonhomogeneous terrain in the field-of-view (FOV) of the thermal infrared and solar sensors. In contrast less extreme values of I consistent with THEMIS retrievals are necessary for good simulations of observed Ta. We deduce that the measured Tg for the small ?3 m2 FOV may not always be representative for the larger region around the rover, which controls the near-surface atmospheric temperature profile.Peer reviewe

    Annual and diurnal water vapor cycles at Curiosity from observations and column modeling

    Get PDF
    Local column precipitable water contents (PWC) for more than a martian year from 113 Curiosity ChemCam passive-mode sky scans were used to force a column model with subsurface adsorption. ChemCam volume mixing ratios (vmr) and T, RH and vmr from REMS-H were compared with model results. The REMS-H observations point to decrease of vmr (i.e. depletion of near-surface water vapor) during every evening and night throughout the year. The model's pre-dawn results are quite similar to the REMS-H observations, if adsorption is allowed. The indicated porosity is about 30% and the night depletion ratio about 0.25. If adsorption is not allowed, RH and vmr become excessive during every night at all seasons, leading to ground frost between Ls 82 degrees-146 degrees; frost has not been observed. As brine formation is unlikely along the Curiosity track, adsorption thus appears to be the depleting process. During daytime the ChemCam vmr is in general close to surface values from the Mars Climate Database (MCD) vmr profiles for the Curiosity site when those profiles are scaled to match the ChemCam PWC. Our simulated daytime surface-vmr is in turn close to the ChemCam vmr when moisture is assumed well-mixed to high altitudes, whereas a low moist layer (15 km) leads to overestimates, which are worse during the warm season. Increased TES-like regional PWC also leads to large overestimates of daytime surface-vmr. Hence the crater appears to be drier than the region surrounding Gale and the results support a seasonally varying vertical distribution of moisture with a dry lower atmosphere (by Hadley circulation), as suggested by MCD and other GCM experiments.Peer reviewe

    The Surface Energy Budget at Gale Crater During the First 2500 Sols of the Mars Science Laboratory Mission

    Get PDF
    We use in situ environmental measurements by the Mars Science Laboratory (MSL) mission to obtain the surface energy budget (SEB) across Curiosity's traverse during the first 2500 sols of the mission. This includes values of the downwelling shortwave solar radiation, the upwelling solar radiation reflected by the surface, the downwelling longwave radiation from the atmosphere, the upwelling longwave radiation emitted by the surface, the sensible heat flux associated with turbulent motions, and the latent heat flux associated with water phase changes. We then analyze their temporal variation on different timescales and relate this to the mechanisms causing these variations. Through its Rover Environmental Monitoring Station, MSL allows for a more accurate determination of the SEB than its predecessors on Mars. Moreover, the unprecedented duration, cadence, and frequency of MSL environmental observations allow for analyses of the SEB from diurnal to interannual timescales. The results presented in this article can be used to evaluate the consistency with predictions from atmospheric numerical models, to validate aerosol radiative properties under a range of dust conditions, to understand the energy available for solar-powered missions, and to enable comparisons with measurements of the SEB by the Perseverance rover at Jezero crater.Peer reviewe

    Mars Science Laboratory relative humidity observations : Initial results

    Get PDF
    The authors would like to express their gratitude to the MSL and REMS instrument teams in making this wonderful Mars mission come true. Ari‐Matti Harri and Hannu Savijarvi are thankful for the Finnish Academy grants 132825 and 131723.Peer reviewedPublisher PD
    corecore