23,894 research outputs found

    Nucleus Driven Electronic Pulsation

    Get PDF
    We derive and solve by the spectral method the equations for a neutral system of ultra-relativistic electrons that are compressed to the radius of the nucleus and subject to a driving force. This driving force can be thought of as originating from a nuclear breathing mode, a possibility we discuss in detail

    Electron transport through an interacting region: The case of a nonorthogonal basis set

    Full text link
    The formula derived by Meir and Wingreen [Phys. Rev. Lett. {\bf 68}, 2512 (1992)] for the electron current through a confined, central region containing interactions is generalized to the case of a nonorthogonal basis set. As in the original work, the present derivation is based on the nonequilibrium Keldysh formalism. By replacing the basis functions of the central region by the corresponding elements of the dual basis, the lead- and central region-subspaces become mutually orthogonal. The current formula is then derived in the new basis, using a generalized version of second quantization and Green's function theory to handle the nonorthogonality within each of the regions. Finally, the appropriate nonorthogonal form of the perturbation series for the Green's function is established for the case of electron-electron and electron-phonon interactions in the central region.Comment: Added references. 8 pages, 1 figur

    Orientation and strain modulated electronic structures in puckered arsenene nanoribbons

    Full text link
    Orthorhombic arsenene was recently predicted as an indirect bandgap semiconductor. Here, we demonstrate that nanostructuring arsenene into nanoribbons can successfully transform the bandgap to be direct. It is found that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons, which is dominated by the competition between the in-plane and out-of-plane bondings. Moreover, straining the nanoribbons also induces a direct bandgap and simultaneously modulates effectively the transport property. The gap energy is largely enhanced by applying tensile strains to the armchair structures. In the zigzag ones, a tensile strain makes the effective mass of holes much higher while a compressive strain cause it much lower than that of electrons. Our results are crutial to understand and engineer the electronic properties of two dimensional materials beyond the planar ones like graphene

    Modeling the Broadband Spectral Energy Distribution of the Microquasars XTE J1550-564 and H 1743-322

    Full text link
    We report results from a systematic study of the spectral energy distribution (SED) and spectral evolution of XTE J1550--564 and H 1743--322 in outburst. The jets of both sources have been directly imaged at both radio and X-ray frequencies, which makes it possible to constrain the spectrum of the radiating electrons in the jets. We modelled the observed SEDs of the jet `blobs' with synchrotron emission alone and with synchrotron emission plus inverse Compton scattering. The results favor a pure synchrotron origin of the observed jet emission. Moreover, we found evidence that the shape of the electron spectral distribution is similar for all jet `blobs' seen. Assuming that this is the case for the jet as a whole, we then applied the synchrotron model to the radio spectrum of the total emission and extrapolated the results to higher frequencies. In spite of significant degeneracy in the fits, it seems clear that, while the synchrotron radiation from the jets can account for nearly 100% of the measured radio fluxes, it contributes little to the observed X-ray emission, when the source is relatively bright. In this case, the X-ray emission is most likely dominated by emission from the accretion flows. When the source becomes fainter, however, the jet emission becomes more important, even dominant, at X-ray energies. We also examined the spectral properties of the sources during outbursts and the correlation between the observed radio and X-ray variabilities. The implication of the results is discussed.Comment: 9 pages, 11 figures, MNRAS, accepted; the paper has been much expanded (e.g., arguments strengthened, another source H 1743-322 added) and rewritten (e.g., title changed, abstract revised); the main conclusions remain unchange

    Conserving GW scheme for nonequilibrium quantum transport in molecular contacts

    Get PDF
    We give a detailed presentation of our recent scheme to include correlation effects in molecular transport calculations using the GW approximation within the non-equilibrium Keldysh formalism. We restrict the GW self-energy to the central region, and describe the leads by density functional theory (DFT). A minimal basis of maximally localized Wannier functions is applied both in the central GW region and the leads. The importance of using a conserving, i.e. fully self-consistent, GW self-energy is demonstrated both analytically and by numerical examples. We introduce an effective spin-dependent interaction which automatically reduces self-interaction errors to all orders in the interaction. The scheme is applied to the Anderson model in- and out of equilibrium. In equilibrium at zero temperature we find that GW describes the Kondo resonance fairly well for intermediate interaction strengths. Out of equilibrium we demonstrate that the one-shot G0W0 approximation can produce severe errors, in particular at high bias. Finally, we consider a benzene molecule between featureless leads. It is found that the molecule's HOMO-LUMO gap as calculated in GW is significantly reduced as the coupling to the leads is increased, reflecting the more efficient screening in the strongly coupled junction. For the IV characteristics of the junction we find that HF and G0W0[G_HF] yield results closer to GW than does DFT and G0W0[G_DFT]. This is explained in terms of self-interaction effects and life-time reduction due to electron-electron interactions.Comment: 23 pages, 16 figure

    Vertical profiles of droplet effective radius in shallow convective clouds

    Get PDF
    Conventional satellite retrievals can only provide information on cloud-top droplet effective radius (<i>r</i><sub>e</sub>). Given the fact that cloud ensembles in a satellite snapshot have different cloud-top heights, Rosenfeld and Lensky (1998) used the cloud-top height and the corresponding cloud-top <i>r</i><sub>e</sub> from the cloud ensembles in the snapshot to construct a profile of <i>r</i><sub>e</sub> representative of that in the individual clouds. This study investigates the robustness of this approach in shallow convective clouds based on results from large-eddy simulations (LES) for clean (aerosol mixing ratio <i>N</i><sub>a</sub> = 25 mg<sup>−1</sup>), intermediate (<i>N</i><sub>a</sub> = 100 mg<sup>−1</sup>), and polluted (<i>N</i><sub>a</sub> = 2000 mg<sup>−1</sup>) conditions. The cloud-top height and the cloud-top <i>r</i><sub>e</sub> from the modeled cloud ensembles are used to form a constructed <i>r</i><sub>e</sub> profile, which is then compared to the in-cloud <i>r</i><sub>e</sub> profiles. For the polluted and intermediate cases where precipitation is negligible, the constructed <i>r</i><sub>e</sub> profiles represent the in-cloud <i>r</i><sub>e</sub> profiles fairly well with a low bias (about 10 %). The method used in Rosenfeld and Lensky (1998) is therefore validated for nonprecipitating shallow cumulus clouds. For the clean, drizzling case, the in-cloud <i>r</i><sub>e</sub> can be very large and highly variable, and quantitative profiling based on cloud-top <i>r</i><sub>e</sub> is less useful. The differences in <i>r</i><sub>e</sub> profiles between clean and polluted conditions derived in this manner are however, distinct. This study also investigates the subadiabatic characteristics of the simulated cumulus clouds to reveal the effect of mixing on <i>r</i><sub>e</sub> and its evolution. Results indicate that as polluted and moderately polluted clouds develop into their decaying stage, the subadiabatic fraction <i>f</i><sub>ad</sub> becomes smaller, representing a higher degree of mixing, and <i>r</i><sub>e</sub> becomes smaller (~10 %) and more variable. However, for the clean case, smaller <i>f</i><sub>ad</sub> corresponds to larger <i>r</i><sub>e</sub> (and larger <i>r</i><sub>e</sub> variability), reflecting the additional influence of droplet collision-coalescence and sedimentation on <i>r</i><sub>e</sub>. Finally, profiles of the vertically inhomogeneous clouds as simulated by the LES and those of the vertically homogeneous clouds are used as input to a radiative transfer model to study the effect of cloud vertical inhomogeneity on shortwave radiative forcing. For clouds that have the same liquid water path, <i>r</i><sub>e</sub> of a vertically homogeneous cloud must be about 76–90 % of the cloud-top <i>r</i><sub>e</sub> of the vertically inhomogeneous cloud in order for the two clouds to have the same shortwave radiative forcing

    Photoproduction in semiconductors by onset of magnetic field

    Full text link
    The energy bands of a semiconductor are lowered by an external magnetic field. When a field is switched on, the straight-line trajectories near the top of the occupied valence band are curved into Landau orbits and Bremsstrahlung is emitted until the electrons have settled in their final Fermi distribution. We calculate the radiated energy, which should be experimentally detectable, and suggest that a semiconductor can be cooled by an oscillating magnetic field
    corecore