46,215 research outputs found
Electrochemical energy storage systems for solar thermal applications
Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA)
Unexpected Density Fluctuations in Jammed Disordered Sphere Packings
We computationally study jammed disordered hard-sphere packings as large as a
million particles. We show that the packings are saturated and hyperuniform,
i.e., that local density fluctuations grow only as a logarithmically-augmented
surface area rather than the volume of the window. The structure factor shows
an unusual non-analytic linear dependence near the origin, . In
addition to exponentially damped oscillations seen in liquids, this implies a
weak power-law tail in the total correlation function, , and a
long-ranged direct correlation function.Comment: Submitted for publicatio
Non-Universality of Density and Disorder in Jammed Sphere Packings
We show for the first time that collectively jammed disordered packings of
three-dimensional monodisperse frictionless hard spheres can be produced and
tuned using a novel numerical protocol with packing density as low as
0.6. This is well below the value of 0.64 associated with the maximally random
jammed state and entirely unrelated to the ill-defined ``random loose packing''
state density. Specifically, collectively jammed packings are generated with a
very narrow distribution centered at any density over a wide density
range with variable disorder. Our results
support the view that there is no universal jamming point that is
distinguishable based on the packing density and frequency of occurence. Our
jammed packings are mapped onto a density-order-metric plane, which provides a
broader characterization of packings than density alone. Other packing
characteristics, such as the pair correlation function, average contact number
and fraction of rattlers are quantified and discussed.Comment: 19 pages, 4 figure
Confinement and the quark Fermi-surface in SU(2N) QCD-like theories
Yang-Mills theories with a gauge group SU(N_c\=3)and quark matter in the
fundamental representation share many properties with the theory of strong
interactions, QCD with N_c=3. We show that, for N_c even and in the confinement
phase, the gluonic average of the quark determinant is independent of the
boundary conditions, periodic or anti-periodic ones. We then argue that a Fermi
sphere of quarks can only exist under extreme conditions when the centre
symmetry is spontaneously broken and colour is liberated. Our findings are
supported by lattice gauge simulations for N_c=2...5 and are illustrated by
means of a simple quark model.Comment: 5 pages, 2 figures, revised journal versio
Phase Behavior of Colloidal Superballs: Shape Interpolation from Spheres to Cubes
The phase behavior of hard superballs is examined using molecular dynamics
within a deformable periodic simulation box. A superball's interior is defined
by the inequality , which provides a
versatile family of convex particles () with cube-like and
octahedron-like shapes as well as concave particles () with
octahedron-like shapes. Here, we consider the convex case with a deformation
parameter q between the sphere point (q = 1) and the cube (q = 1). We find that
the asphericity plays a significant role in the extent of cubatic ordering of
both the liquid and crystal phases. Calculation of the first few virial
coefficients shows that superballs that are visually similar to cubes can have
low-density equations of state closer to spheres than to cubes. Dense liquids
of superballs display cubatic orientational order that extends over several
particle lengths only for large q. Along the ordered, high-density equation of
state, superballs with 1 < q < 3 exhibit clear evidence of a phase transition
from a crystal state to a state with reduced long-ranged orientational order
upon the reduction of density. For , long-ranged orientational order
persists until the melting transition. The width of coexistence region between
the liquid and ordered, high-density phase decreases with q up to q = 4.0. The
structures of the high-density phases are examined using certain order
parameters, distribution functions, and orientational correlation functions. We
also find that a fixed simulation cell induces artificial phase transitions
that are out of equilibrium. Current fabrication techniques allow for the
synthesis of colloidal superballs, and thus the phase behavior of such systems
can be investigated experimentally.Comment: 33 pages, 14 figure
Infinite density matrix renormalization group for multicomponent quantum Hall systems
While the simplest quantum Hall plateaus, such as the state in
GaAs, can be conveniently analyzed by assuming only a single active Landau
level participates, for many phases the spin, valley, bilayer, subband, or
higher Landau level indices play an important role. These `multi-component'
problems are difficult to study using exact diagonalization because each
component increases the difficulty exponentially. An important example is the
plateau at , where scattering into higher Landau levels chooses
between the competing non-Abelian Pfaffian and anti-Pfaffian states. We address
the methodological issues required to apply the infinite density matrix
renormalization group to quantum Hall systems with multiple components and
long-range Coulomb interactions, greatly extending accessible system sizes. As
an initial application we study the problem of Landau level mixing in the state. Within the approach to Landau level mixing used here, we find
that at the Coulomb point the anti-Pfaffian is preferred over the Pfaffian
state over a range of Landau level mixing up to the experimentally relevant
values.Comment: 12 pages, 9 figures. v2 added more data for different amounts of
Landau level mixing at 5/2 fillin
The neural correlates of speech motor sequence learning
Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.R01 DC007683 - NIDCD NIH HHS; R01DC007683 - NIDCD NIH HH
An update of the JPL program to develop Li-SOCl2 cells
The goal of producing spiral wound D cell was met. The cell design and electrodes, particularly the carbon cathodes were produced in-house. Also all parts were assembled, the welding performed, the electrolyte aided and the cells sealed in-house. The lithium capacity (theoretical) was 19.3 Ah and that of the SOCl2 in the 1.8 m LiAlCl4 electrolyte, 16.4 Ah (a greater excess of SOCl2 is necessary for safe high rate operation). The electrode surface area was 452 sq cm. The carbon electrode comprised Shawinigen Black/Teflon -30 (90/10 by weight) mixture 0.020 inches thick on an expanded metal screen prepared in the JPL laboratory. There were two tab connections to the cathode. The 0.0078 inch thick lithium foil was rolled into an expanded nickel screen. The separator was Mead 934-5 fiberglass material
KAT-7 Science Verification: Using HI Observations of NGC 3109 to Understand its Kinematics and Mass Distribution
HI observations of the Magellanic-type spiral NGC 3109, obtained with the
seven dish Karoo Array Telescope (KAT-7), are used to analyze its mass
distribution. Our results are compared to what is obtained using VLA data.
KAT-7 is the precursor of the SKA pathfinder MeerKAT, which is under
construction. The short baselines and low system temperature of the telescope
make it sensitive to large scale low surface brightness emission. The new
observations with KAT-7 allow the measurement of the rotation curve of NGC 3109
out to 32', doubling the angular extent of existing measurements. A total HI
mass of 4.6 x 10^8 Msol is derived, 40% more than what was detected by the VLA
observations.
The observationally motivated pseudo-isothermal dark matter (DM) halo model
can reproduce very well the observed rotation curve but the cosmologically
motivated NFW DM model gives a much poorer fit to the data. While having a more
accurate gas distribution has reduced the discrepancy between the observed RC
and the MOdified Newtonian Dynamics (MOND) models, this is done at the expense
of having to use unrealistic mass-to-light ratios for the stellar disk and/or
very large values for the MOND universal constant a0. Different distances or HI
contents cannot reconcile MOND with the observed kinematics, in view of the
small errors on those two quantities. As for many slowly rotating gas-rich
galaxies studied recently, the present result for NGC 3109 continues to pose a
serious challenge to the MOND theory.Comment: 25 pages, 20 figures, accepted for publication in Astronomical
Journa
- …