1,214 research outputs found

    Transport of magnetic flux from the canopy to the internetwork

    Full text link
    Recent observations have revealed that 8% of linear polarization patches in the internetwork quiet Sun are fully embedded in downflows. These are not easily explained with the typical scenarios for the source of internetwork fields which rely on flux emergence from below. We explore using radiative MHD simulations a scenario where magnetic flux is transported from the magnetic canopy overlying the internetwork into the photosphere by means of downward plumes associated with convective overshoot. We find that if a canopy-like magnetic field is present in the simulation, the transport of flux from the canopy is an important process for seeding the photospheric layers of the internetwork with magnetic field. We propose that this mechanism is relevant for the Sun as well, and it could naturally explain the observed internetwork linear polarization patches entirely embedded in downflows.Comment: Accepted to Ap

    Emergence of Small-Scale Magnetic Loops in the Quiet Sun Internetwork

    Full text link
    We study the emergence of magnetic flux at very small spatial scales (less than 2 arcsec) in the quiet Sun internetwork. To this aim, a time series of spectropolarimetric maps was taken at disk center using the instrument SP/SOT on board Hinode. The LTE inversion of the full Stokes vector measured in the Fe I 6301 and 6302 A lines allows us to retrieve the magnetic flux and topology in the region of study. In the example presented here, the magnetic flux emerges within a granular structure. The horizontal magnetic field appears prior to any significant amount of vertical field. As time goes on, the traces of the horizontal field disappear while the the vertical dipoles drift -carried by the plasma motions- towards the surrounding intergranular lanes. These events take place within typical granulation timescales.Comment: 9 pages (referee format), 3 figures. Accepted for publication in ApJ Letter

    All-Dielectric Rod-Type Metamaterials at Optical Frequencies

    Full text link
    Light propagation in all-dielectric rod-type metamaterials is studied theoretically. The electric and magnetic dipole moments of the rods are derived analytically in the long-wavelength limit. The effective permittivity and permeability of a square lattice of rods are calculated by homogenizing the corresponding array of dipoles. The role of dipole resonances in the optical properties of the rod array is interpreted. This structure is found to exhibit a true left-handed behavior, confirming previous experiments [L. Peng \textit{et al.}, Phys. Rev. Lett. \textbf{98}, 157403 (2007)]. A scaling analysis shows that this effect holds at optical frequencies and can be obtained by using rods made, for example, of silicon.Comment: 10 pages, 4 figures. The title has been shortened; Figs. 1, 2 and 3 have been modified; Eq. 4 has been corrected (sign error); A few sentences have been added/rewritte

    Features of spatial distribution of oscillations in faculae regions

    Full text link
    We found that oscillations of LOS velocity in H-alpha are different for various parts of faculae regions. Power spectra show that the contribution of low-frequency modes (1.2 - 2 mHz) increase at the network boundaries. Three and five- minute periods dominate inside cells. The spectra of photosphere and chromosphere LOS velocity oscillations differ for most faculae. On the other hand, we detected several cases where propagating oscillations in faculae were manifest with a five-minute period. Their initiation point on spatial-temporal diagrams coincided with the local maximum of the longitudinal magnetic field.Comment: 6 pages, 4 figure

    Magnetic field diagnostics and spatio-temporal variability of the solar transition region

    Full text link
    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme UV spectro-polarimetry. While for coronal diagnostic techniques already exist through infrared coronagraphy above the limb and radio observations on the disk, for the transition region one has to investigate extreme UV observations. However, so far the success of such observations has been limited, but there are various projects to get spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect for such observations through realistic forward modeling. We employ a 3D MHD forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C IV 1548 A. A signal well above 0.001 in Stokes V can be expected, even when integrating for several minutes in order to reach the required signal-to-noise ratio, despite the fact that the intensity in the model is rapidly changing (just as in observations). Often this variability of the intensity is used as an argument against transition region magnetic diagnostics which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and thus when integrating in time the degree of (circular) polarization remains rather constant. Our study shows the feasibility to measure the transition region magnetic field, if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.Comment: Accepted for publication in Solar Physics (4.Mar.2013), 19 pages, 9 figure

    EUV jets, type III radio bursts and sunspot waves investigated using SDO/AIA observations

    Full text link
    Images from the Solar Dynamics Observatory (SDO) at 211A are used to identify the solar source of the type III radio bursts seen in WIND/WAVES dynamic spectra. We analyse a 2.5 hour period during which six strong bursts are seen. The radio bursts correlate very well with the EUV jets coming from the western side of a sunspot in AR11092. The EUV jet emission also correlates well with brightening at what looks like their footpoint at the edge of the umbra. For 10-15 min after strong EUV jets are ejected, the footpoint brightens at roughly 3 min intervals. In both the EUV images and the extracted light curves, it looks as though the brightening is related to the 3-min sunspot oscillations, although the correlation coefficient is rather low. The only open field near the jets is rooted in the sunspot. We conclude that active region EUV/X-ray jets and interplanetary electron streams originate on the edge of the sunspot umbra. They form along a current sheet between the sunspot open field and closed field connecting to underlying satellite flux. Sunspot running penumbral waves cause roughly 3-min jet footpoint brightening. The relationship between the waves and jets is less clear.Comment: 4 pages, 7 figures, Accepted by A&A Letters. For associated gif movie, see http://www.mps.mpg.de/data/outgoing/innes/jets/losb_304_211_rd.gi

    Direct Imaging of Fine Structure in the Chromosphere of a Sunspot Umbra

    Full text link
    High-resolution imaging observations from the Hinode spacecraft in the CaII H line are employed to study the dynamics of the chromosphere above a sunspot. We find that umbral flashes and other brightenings produced by the oscillation are extremely rich in fine structure, even beyond the resolving limit of our observations (0.22"). The umbra is tremendously dynamic, to the point that our time cadence of 20 s does not suffice to resolve the fast lateral (probably apparent) motion of the emission source. Some bright elements in our dataset move with horizontal propagation speeds of 30 km/s. We have detected filamentary structures inside the umbra (some of which have a horizontal extension of ~1500 km) which, to our best knowledge, had not been reported before. The power spectra of the intensity fluctuations reveals a few distinct areas with different properties within the umbra that seem to correspond with the umbral cores that form it. Inside each one of these areas the dominant frequencies of the oscillation are coherent, but they vary considerably from one core to another.Comment: Accepted for publication in Ap

    Recent Advances in Chromospheric and Coronal Polarization Diagnostics

    Full text link
    I review some recent advances in methods to diagnose polarized radiation with which we may hope to explore the magnetism of the solar chromosphere and corona. These methods are based on the remarkable signatures that the radiatively induced quantum coherences produce in the emergent spectral line polarization and on the joint action of the Hanle and Zeeman effects. Some applications to spicules, prominences, active region filaments, emerging flux regions and the quiet chromosphere are discussed.Comment: Review paper to appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, 200

    Optimising EEG-fMRI for Localisation of Focal Epilepsy in Children

    Get PDF
    BACKGROUND: Early surgical intervention in children with drug resistant epilepsy has benefits but requires using tolerable and minimally invasive tests. EEG-fMRI studies have demonstrated good sensitivity for the localization of epileptic focus but a poor yield although the reasons for this have not been systematically addressed. While adults EEG-fMRI studies are performed in the "resting state"; children are commonly sedated however, this has associated risks and potential confounds. In this study, we assessed the impact of the following factors on the tolerability and results of EEG-fMRI in children: viewing a movie inside the scanner; movement; occurrence of interictal epileptiform discharges (IED); scan duration and design efficiency. This work's motivation is to optimize EEG-fMRI parameters to make this test widely available to paediatric population. METHODS: Forty-six children with focal epilepsy and 20 controls (6-18) underwent EEG-fMRI. For two 10 minutes sessions subjects were told to lie still with eyes closed, as it is classically performed in adult studies ("rest sessions"), for another two sessions, subjects watched a child friendly stimulation i.e. movie ("movie sessions"). IED were mapped with EEG-fMRI for each session and across sessions. The resulting maps were classified as concordant/discordant with the presumed epileptogenic focus for each subject. FINDINGS: Movement increased with scan duration, but the movie reduced movement by ~40% when played within the first 20 minutes. There was no effect of movie on the occurrence of IED, nor in the concordance of the test. Ability of EEG-fMRI to map the epileptogenic region was similar for the 20 and 40 minute scan durations. Design efficiency was predictive of concordance. CONCLUSIONS: A child friendly natural stimulus improves the tolerability of EEG-fMRI and reduces in-scanner movement without having an effect on IED occurrence and quality of EEG-fMRI maps. This allowed us to scan children as young as 6 and obtain localising information without sedation. Our data suggest that ~20 minutes is the optimal length of scanning for EEG-fMRI studies in children with frequent IED. The efficiency of the fMRI design derived from spontaneous IED generation is an important factor for producing concordant results
    • 

    corecore