863 research outputs found

    Cosmological weak lensing with the HST GEMS survey

    Full text link
    We present our cosmic shear analysis of GEMS, one of the largest wide-field surveys ever undertaken by the Hubble Space Telescope. Imaged with the Advanced Camera for Surveys (ACS), GEMS spans 795 square arcmin in the Chandra Deep Field South. We detect weak lensing by large-scale structure in high resolution F606W GEMS data from ~60 resolved galaxies per square arcminute. We measure the two-point shear correlation function, the top-hat shear variance and the shear power spectrum, performing an E/B mode decomposition for each statistic. We show that we are not limited by systematic errors and use our results to place joint constraints on the matter density parameter Omega_m and the amplitude of the matter power spectrum sigma_8. We find sigma_8(Omega_m/0.3)^{0.65}=0.68 +/- 0.13 where the 1sigma error includes both our uncertainty on the median redshift of the survey and sampling variance. Removing image and point spread function (PSF) distortions are crucial to all weak lensing analyses. We therefore include a thorough discussion on the degree of ACS PSF distortion and anisotropy which we characterise directly from GEMS data. Consecutively imaged over 20 days, GEMS data also allows us to investigate PSF instability over time. We find that, even in the relatively short GEMS observing period, the ACS PSF ellipticity varies at the level of a few percent which we account for with a semi-time dependent PSF model. Our correction for the temporal and spatial variability of the PSF is shown to be successful through a series of diagnostic tests.Comment: 17 pages, 16 figures. Version accepted by MNRA

    The role of cisapride in the treatment of pediatric gastroesophageal reflux.

    Get PDF

    Are transnational tobacco companies' market access strategies linked to economic development models? A case study of South Korea.

    Get PDF
    Transnational tobacco companies (TTCs) have used varied strategies to access previously closed markets. Using TTCs' efforts to enter the South Korean market from the late 1980s as a case study, this article asks whether there are common patterns in these strategies that relate to the broader economic development models adopted by targeted countries. An analytical review of the existing literature on TTCs' efforts to access emerging markets was conducted to develop hypotheses relating TTCs' strategies to countries' economic development models. A case study of Korea was then undertaken based on analysis of internal tobacco industry documents. Findings were consistent with the hypothesis that TTCs' strategies in Korea were linked to Korea's export-oriented economic development model and its hostile attitude towards foreign investment. A fuller understanding of TTCs' strategies for expansion globally can be derived by locating them within the economic development models of specific countries or regions. Of foremost importance is the need for governments to carefully balance economic and public health policies when considering liberalisation

    Exploring the Impact of Galaxy Interactions over Seven Billion Years with CAS

    Full text link
    We explore galaxy assembly over the last seven billion years by characterizing "normal" galaxies along the Hubble sequence, against strongly disturbed merging/interacting galaxies with the widely used CAS system of concentration (C), asymmetry (A), and 'clumpiness' (S) parameters, as well as visual classification. We analyze Hubble Space Telescope (HST) ACS images of ~4000 intermediate and high mass (> 10^9 solar masses) galaxies from the GEMS survey, one of the largest HST surveys conducted to date in two filters. We explore the effectiveness of the CAS criteria [A>S and A>~0.35] in separating normal and strongly disturbed galaxies at different redshifts, and quantify the recovery and contamination rate. We also compare the average star formation rate and the cosmic star formation rate density as a function of redshift between normal and interacting systems identified by CAS.Comment: ASP conference proceedings of 2007 Bash Symposium. Latex with asp2006.sty. 4 pages, 4 figure

    Evolution and Impact of Bars over the Last Eight Billion Years: Early Results from GEMS

    Full text link
    Bars drive the dynamical evolution of disk galaxies by redistributing mass and angular momentum, and they are ubiquitous in present-day spirals. Early studies of the Hubble Deep Field reported a dramatic decline in the rest-frame optical bar fraction f_opt to below 5% at redshifts z>0.7, implying that disks at these epochs are fundamentally different from present-day spirals. The GEMS bar project, based on ~8300 galaxies with HST-based morphologies and accurate redshifts over the range 0.2-1.1, aims at constraining the evolution and impact of bars over the last 8 Gyr. We present early results indicating that f_opt remains nearly constant at ~30% over the range z=0.2-1.1,corresponding to lookback times of ~2.5-8 Gyr. The bars detected at z>0.6 are primarily strong with ellipticities of 0.4-0.8. Remarkably, the bar fraction and range of bar sizes observed at z>0.6 appear to be comparable to the values measured in the local Universe for bars of corresponding strengths. Implications for bar evolution models are discussed.Comment: Submitted June 25, 2004. 10 pages 5 figures. To appear in Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note, eds. D. Block, K. Freeman, R. Groess, I. Puerari, & E.K. Block (Dordrecht: Kluwer), in pres

    KiDS-1000: cosmic shear with enhanced redshift calibration

    Get PDF
    We present a cosmic shear analysis with an improved redshift calibration for the fourth data release of the Kilo-Degree Survey (KiDS-1000) using self-organising maps (SOMs). Compared to the previous analysis of the KiDS-1000 data, we expand the redshift calibration sample to more than twice its size, now consisting of data of 17 spectroscopic redshift campaigns, and significantly extending the fraction of KiDS galaxies we are able to calibrate with our SOM redshift methodology. We then enhance the calibration sample with precision photometric redshifts from COSMOS2015 and the Physics of the Accelerated Universe Survey (PAUS), allowing us to fill gaps in the spectroscopic coverage of the KiDS data. Finally we perform a Complete Orthogonal Sets of E/B-Integrals (COSEBIs) cosmic shear analysis of the newly calibrated KiDS sample. We find S8=0.748−0.025+0.021S_8 = 0.748_{-0.025}^{+0.021}, which is in good agreement with previous KiDS studies and increases the tension with measurements of the cosmic microwave background to 3.4{\sigma}. We repeat the redshift calibration with different subsets of the full calibration sample and obtain, in all cases, agreement within at most 0.5{\sigma} in S8S_8 compared to our fiducial analysis. Including additional photometric redshifts allows us to calibrate an additional 6 % of the source galaxy sample. Even though further systematic testing with simulated data is necessary to quantify the impact of redshift outliers, precision photometric redshifts can be beneficial at high redshifts and to mitigate selection effects commonly found in spectroscopically selected calibration samples.Comment: 18 pages, 15 figures, 6 table

    KiDS-i-800: Comparing weak gravitational lensing measurements in same-sky surveys

    Get PDF
    We present a weak gravitational lensing analysis of 815 square degree of ii-band imaging from the Kilo-Degree Survey (KiDS-ii-800). In contrast to the deep rr-band observations, which take priority during excellent seeing conditions and form the primary KiDS dataset (KiDS-rr-450), the complementary yet shallower KiDS-ii-800 spans a wide range of observing conditions. The overlapping KiDS-ii-800 and KiDS-rr-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis, we introduce two new `null' tests. The `nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-ii-800 and KiDS-rr-450 shear measurements agree at the level of 1±41 \pm 4\%. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy lensing signal from the full KiDS-ii-800 and KiDS-rr-450 surveys and find that the measurements agree to 7±57 \pm 5\% when the KiDS-ii-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.Comment: 24 pages, 20 figures. Submitted to MNRAS. Comments welcom

    Cosmology from large-scale structure. Constraining LambdaCDM with BOSS

    Get PDF
    We reanalyse the anisotropic galaxy clustering measurement from the Baryon Oscillation Spectroscopic Survey (BOSS), demonstrating that using the full shape information provides cosmological constraints that are comparable to other low-redshift probes. We find Ωm = 0.317+0.015−0.019, σ8 = 0.710±0.049, and h = 0.704 ± 0.024 for flat ΛCDM cosmologies using uninformative priors on Ωch2, 100θMC, ln1010As, and ns, and a prior on Ωbh2 that is much wider than current constraints. We quantify the agreement between the Planck 2018 constraints from the cosmic microwave background and BOSS, finding the two data sets to be consistent within a flat ΛCDM cosmology using the Bayes factor as well as the prior-insensitive suspiciousness statistic. Combining two low-redshift probes, we jointly analyse the clustering of BOSS galaxies with weak lensing measurements from the Kilo-Degree Survey (KV450). The combination of BOSS and KV450 improves the measurement by up to 45%, constraining σ8 = 0.702 ± 0.029 and S8 = σ8 Ωm/0.3 = 0.728 ± 0.026. Over the full 5D parameter space, the odds in favour of a single cosmology describing galaxy clustering, lensing, and the cosmic microwave background are 7 ± 2. The suspiciousness statistic signals a 2.1 ± 0.3σ tension between the combined low-redshift probes and measurements from the cosmic microwave background
    • …
    corecore