30 research outputs found

    Computational Study of the Human Dystrophin Repeats: Interaction Properties and Molecular Dynamics

    Get PDF
    Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy

    Molecular clues about the dystrophin-neuronal nitric oxide synthase interaction: a theoretical approach.

    No full text
    International audienceDystrophin is a large skeletal muscle protein located at the internal face of the plasma membrane and interacting with membrane phospholipids and a number of cytosolic proteins. Binding of neuronal nitric oxide synthase (nNOS) to dystrophin appears to be crucial for exercise-induced increases in blood supply in muscle cells. By contrast, utrophin, the developmental homologous protein of dystrophin, does not display nNOS interaction. Recent in vitro and in vivo experiments showed that the dystrophin region involved in nNOS binding is located in spectrin-like repeats R16 and R17 of its filamentous central domain. Using homology modeling and atomistic molecular dynamics simulation, we compared the structural organization and surface potentials of dystrophin, utrophin, and chimeric fragments, thus revisiting the dystrophin-nNOS binding region. Our simulation results are in good agreement with experimental data. They provide a three-dimensional representation of the repeats and give insight into the molecular organization of the regions involved in dystrophin-nNOS interaction. This study also further elucidates the physical properties crucial for this interaction, particularly the presence of a large hydrophobic patch. These results will be helpful to improving our understanding of the phenotypic features of patients bearing mutations in the nNOS-binding region of dystrophin
    corecore