9 research outputs found

    Scheduling the Belgian soccer league.

    Get PDF
    Scheduling; International; Theory;

    A guided search non-dominated sorting genetic algorithm for the multi-objective university course timetabling problem

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2011.The university course timetabling problem is a typical combinatorial optimization problem. This paper tackles the multi-objective university course timetabling problem (MOUCTP) and proposes a guided search non-dominated sorting genetic algorithm to solve the MOUCTP. The proposed algorithm integrates a guided search technique, which uses a memory to store useful information extracted from previous good solutions to guide the generation of new solutions, and two local search schemes to enhance its performance for the MOUCTP. The experimental results based on a set of test problems show that the proposed algorithm is efficient for solving the MOUCTP

    On a Clique-Based Integer Programming Formulation of Vertex Colouring with Applications in Course Timetabling

    Full text link
    Vertex colouring is a well-known problem in combinatorial optimisation, whose alternative integer programming formulations have recently attracted considerable attention. This paper briefly surveys seven known formulations of vertex colouring and introduces a formulation of vertex colouring using a suitable clique partition of the graph. This formulation is applicable in timetabling applications, where such a clique partition of the conflict graph is given implicitly. In contrast with some alternatives, the presented formulation can also be easily extended to accommodate complex performance indicators (``soft constraints'') imposed in a number of real-life course timetabling applications. Its performance depends on the quality of the clique partition, but encouraging empirical results for the Udine Course Timetabling problem are reported

    A new approach to modeling and solving minimal perturbation problems

    No full text
    Abstract. Formulation of many real-life problems evolves when the problem is being solved. For example, a change in the environment might appear after the initial problem specification and this change must be reflected in the solution. Such changes complicate usage of a traditionally static constraint satisfaction technology that requires the problem to be fully specified before the solving process starts. In this paper, we propose a new formal description of changes in the problem formulation called a minimal perturbation problem. This description focuses on the modification of the solution after a change in the problem specification. We also describe a new branch-and-bound like algorithm for solving such type of problems
    corecore