131 research outputs found

    GaN/AlN Quantum Dots for Single Qubit Emitters

    Full text link
    We study theoretically the electronic properties of cc-plane GaN/AlN quantum dots (QDs) with focus on their potential as sources of single polarized photons for future quantum communication systems. Within the framework of eight-band k.p theory we calculate the optical interband transitions of the QDs and their polarization properties. We show that an anisotropy of the QD confinement potential in the basal plane (e.g. QD elongation or strain anisotropy) leads to a pronounced linear polarization of the ground state and excited state transitions. An externally applied uniaxial stress can be used to either induce a linear polarization of the ground-state transition for emission of single polarized photons or even to compensate the polarization induced by the structural elongation.Comment: 6 pages, 9 figures. Accepted at Journal of Physics: Condensed Matte

    Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses

    Get PDF
    Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in-situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs) achieving their efficient coupling to the external light field. This enables to perform four-wave mixing micro-spectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the lineshape of the phonon-assisted PL using realistic quantum dot geometries

    In-situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy

    Get PDF
    We report on the deterministic fabrication of sub-um mesa structures containing single quantum dots by in-situ electron-beam lithography. The fabrication method is based on a two-step lithography process using a low-temperature cathodoluminescence (CL) spectroscopy setup. In the first step the position and spectral features of single InGaAs quantum dots (QDs) are detected by CL. Then circular sub-um mesa-structures are exactly defined by high-resolution electron-beam lithography and subsequent etching in the second step. CL spectroscopy and micro-photoluminscence spectroscopy demonstrate the high optical quality of the single-QD mesa-structures with emission linewidths below 15 ueV and g(2)(0) = 0.04. Our lithography method allows for an alignment precision better than 100 nm which paves the way for a fully-deterministic device technology using in-situ CL lithography.Comment: 4 pages, 4 figure

    Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody

    Get PDF
    Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Energy-time entanglement from a resonantly driven quantum dot three-level system

    Full text link
    Entanglement is a major resource in advanced quantum technology, where it can enable secure exchange of information over large distances. Energy-time entanglement is particularly attractive for its beneficial robustness in fiber-based quantum communication and can be demonstrated in the Franson interferometer. We report on Franson-type interference from a resonantly driven biexciton cascade under continuous wave excitation. Our measurements yield a maximum visibility of (73 ±\pm 2)% surpassing the limit of violation of Bell's inequality (70.7%) by more than one standard deviation. Despite being unable to satisfy a loophole free violation, our work demonstrates promising results concerning future works on such a system. Furthermore, our systematical studies on the impact of driving strength indicate that dephasing mechanisms and deviations from the cascaded emission have major impact on the degree of the measured energy-time entanglement

    The politicisation of evaluation: constructing and contesting EU policy performance

    Get PDF
    Although systematic policy evaluation has been conducted for decades and has been growing strongly within the European Union (EU) institutions and in the member states, it remains largely underexplored in political science literatures. Extant work in political science and public policy typically focuses on elements such as agenda setting, policy shaping, decision making, or implementation rather than evaluation. Although individual pieces of research on evaluation in the EU have started to emerge, most often regarding policy “effectiveness” (one criterion among many in evaluation), a more structured approach is currently missing. This special issue aims to address this gap in political science by focusing on four key focal points: evaluation institutions (including rules and cultures), evaluation actors and interests (including competencies, power, roles and tasks), evaluation design (including research methods and theories, and their impact on policy design and legislation), and finally, evaluation purpose and use (including the relationships between discourse and scientific evidence, political attitudes and strategic use). The special issue considers how each of these elements contributes to an evolving governance system in the EU, where evaluation is playing an increasingly important role in decision making

    Lateral positioning of InGaAs quantum dots using a buried stressor

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 100, 093111 (2012) and may be found at https://doi.org/10.1063/1.3691251.We present a “bottom-up” approach for the lateral alignment of semiconductor quantum dots (QDs) based on strain-driven self-organization. A buried stressor formed by partial oxidation of (Al,Ga)As layers is employed in order to create a locally varying strain field at a GaAs(001) growth surface. During subsequent strained layer growth, local self-organization of (In,Ga)As QDs is controlled by the contour shape of the stressor. Large vertical separation of the QD growth plane from the buried stressor interface of 150 nm is achieved enabling high optical quality of QDs. Optical characterization confirms narrow QD emission lines without spectral diffusion.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
    • …
    corecore