1,322 research outputs found
Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics
The fundamental guided dispersion characteristics of guided light in a
subwavelength dielectric slit channel embedded by two different plasmonic
metals are investigated when varying the gap width. As a result, an overall and
salient picture of the guided dispersion characteristics is obtained over a
wide spectrum range below and above the plasma frequencies of the two different
plasmonic metals, which is important preliminary information for analyzing this
type of subwavelength waveguide. In particular, the effects of using two
different metals on the guided mode dispersions are emphasized in comparison
with the effects of using the same plasmonic metal cladding.Comment: 13 pages, 3 figures, typos corrected, reference added, text modifie
Metastable states of surface plasmon vacuum near the interface between metal and nonlinear dielectric
Zero-point fluctuations of surface plasmon modes near the interface between
metal and nonlinear dielectric are shown to produce a thin layer of altered
dielectric constant near the interface. This effect may be sufficiently large
to produce multiple metastable states of the surface plasmon vacuum.Comment: 4 pages, 2 figure
Quantitative Determination of Enhanced and Suppressed Transmission through Subwavelength Slit Arrays in Silver Films
Measurement of the transmitted intensity from a coherent monomode light
source through a series of subwavelength slit arrays in Ag films, with varying
array pitch and number of slits, demonstrate enhancement (suppression) by as
much as a factor of 6 (9) when normalized to that of an isolated slit.
Pronounced minima in the transmitted intensity were observed at array pitches
corresponding to lambda_SPP, 2lambda_SPP, and 3lambda_SPP where lambda_SPP is
the wavelength of the surface plasmon polariton (SPP). Increasing the number of
slits to more than four does not increase appreciably the per-slit transmission
intensity. These results are consistent with a model for interference between
SPPs and the incident wave that fits well the measured transmitted intensity
profile.Comment: Figure 4 update
Nondispersive and dispersive collective electronic modes in carbon nanotubes
We propose a new theoretical interpretation of the electron energy-loss
spectroscopy results of Pichler {\it et al.} on bulk carbon nanotube samples.
The experimentally found nondispersive modes have been attributed by Pichler
{\it et al.} to interband excitations between localized states polarized
perpendicular to the nanotube axis. This interpretation has been challenged by
a theorist who attributed the modes to optical plasmons carrying nonzero
angular momenta. We point out that both interpretations suffer from
difficulties. From our theoretical results of the loss functions for individual
carbon nanotubes based on a tight-binding model, we find that the nondispersive
modes could be due to collective electronic modes in chiral carbon nanotubes,
while the observed dispersive mode should be due to collective electronic modes
in armchair and zigzag carbon nanotubes. Momentum-dependent electron
energy-loss experiments on individual carbon nanotubes should be able to
confirm or disprove this interpretation decisively.Comment: 4 pages, 3 figure
Plasmons in electrostatically doped graphene
Graphene has raised high expectations as a low-loss plasmonic material in
which the plasmon properties can be controlled via electrostatic doping. Here,
we analyze realistic configurations, which produce inhomogeneous doping, in
contrast to what has been so far assumed in the study of plasmons in
nanostructured graphene. Specifically, we investigate backgated ribbons,
co-planar ribbon pairs placed at opposite potentials, and individual ribbons
subject to a uniform electric field. Plasmons in backgated ribbons and ribbon
pairs are similar to those of uniformly doped ribbons, provided the Fermi
energy is appropriately scaled to compensate for finite-size effects such as
the divergence of the carrier density at the edges. In contrast, the plasmons
of a ribbon exposed to a uniform field exhibit distinct dispersion and spatial
profiles that considerably differ from uniformly doped ribbons. Our results
provide a road map to understand graphene plasmons under realistic
electrostatic doping conditions.Comment: 9 pages, 9 figure
Large tunable photonic band gaps in nanostructured doped semiconductors
A plasmonic nanostructure conceived with periodic layers of a doped
semiconductor and passive semiconductor is shown to generate spontaneously
surface plasmon polaritons thanks to its periodic nature. The nanostructure is
demonstrated to behave as an effective material modeled by a simple dielectric
function of ionic-crystal type, and possesses a fully tunable photonic band
gap, with widths exceeding 50%, in the region extending from mid-infra-red to
Tera-Hertz.Comment: 6 pages, 4 figures, publishe
Plasmonic Enhancement of Emission from Si-nanocrystals
Plasmonic gratings of different periodicities are fabricated on top of
Silicon nanocrystals embedded in Silicon Dioxide. Purcell enhancements of up to
2 were observed, which matches the value from simulations. Plasmonic
enhancements are observed for the first three orders of the plasmonic modes,
with the peak enhancement wavelength varying with the periodicity. Biharmonic
gratings are also fabricated to extract the enhanced emission from the first
order plasmonic mode, resulting in enhancements with quality factors of up to
16.Comment: 4 pages, 5 figures added explanation of low purcell enhancement
updated figure
Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy
We use cathodoluminescence imaging spectroscopy to excite surface plasmon polaritons and measure their decay length on single crystal and polycrystalline gold surfaces. The surface plasmon polaritons are excited on the gold surface by a nanoscale focused electron beam and are coupled into free space radiation by gratings fabricated into the surface. By scanning the electron beam on a line perpendicular to the gratings, the propagation length is determined. Data for single-crystal gold are in agreement with calculations based on dielectric constants. For polycrystalline films, grain boundary scattering is identified as additional loss mechanism, with a scattering coefficient SG=0.2%
Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array
This work confirms that not only surface plasmons but many other kinds of
electromagnetic eigenmodes should be considered in explaining the values of the
transmittivity through a slab bearing a two-dimensional periodic corrugation.
Specifically, the role of Brewster-Zennek modes appearing in metallic films
exhibiting regions of weak positive dielectric constant. It is proposed that
these modes play a significant role in the light transmission in a thin
chromium film perforated with normal cylindrical holes, for appropriate lattice
parameters.Comment: 5 pages, 4 figures. Published versio
Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides
We study the energy propagation in subwavelength waveguides and demonstrate
that the mechanism of material gain, previously suggested for loss
compensation, is also a powerful tool to manipulate dispersion and propagation
characteristics of electromagnetic pulses at the nanoscale. We show
theoretically that the group velocity in lossy nano-waveguides can be
controlled from slow to superluminal values by the material gain and waveguide
geometry and develop an analytical description of the relevant physics. We
utilize the developed formalism to show that gain-assisted dispersion
management can be used to control the transition between ``photonic-funnel''
and ``photonic-compressor'' regimes in tapered nano-waveguides. The phenomenon
of strong modulation of group velocity in subwavelength structures can be
realized in waveguides with different geometries, and is present for both
volume and surface-modes.Comment: Some changes in the abstract and Fig.1. No results affecte
- …
