697 research outputs found

    Effects of T-tabs and large deflections in DCB specimen tests

    Get PDF
    A simple strength of materials analysis was developed for a double-cantilever beam (DCB) specimen to account for geometric nonlinearity effects due to large deflections and T-tabs. A new DCB data analysis procedure was developed to include the effects of these nonlinearities. The results of the analysis were evaluated by DCB tests performed for materials having a wide range of toughnesses. The materials used in the present study were T300/5208, IM7/8551-7, and AS4/PEEK. Based on the present analysis, for a typical deflection/crack length ratio of 0.3 (for AS4/PEEK), T-tabs and large deflections cause a 15 percent and 3 percent error, respectively, in the computer Mode 1 strain energy release rate. Design guidelines for DCB specimen thickness and T-tab height were also developed in order to keep errors due to these nonlinearities within 2 percent. Based on the test results, for both hinged and tabbed specimens, the effects of large deflection on the Mode 1 fracture toughness (G sub Ic) were almost negligible (less than 1 percent) in the case of T300/5208 and IM7/8551-7; however, AS4/PEEK showed a 2 to 3 percent effect. The effects of T-tabs G sub Ic were more significant for all the materials with T300/5208 showing a 5 percent error, IM7/8551-7 a 15 percent error, and, AS4/PEEK a 20 percent error

    Gene action and combining ability estimates of newly developed CMS based heterotic rice hybrids (Oryza sativa L.)

    Get PDF
    An insight knowledge nature and relative magnitude of gene actions involved and combining ability is useful for a breeder to assess nicking ability in self-pollinated crops. In this connection, an attempt was made to esti- mate the gene action and combining ability of 70 newly developed CMS based heterotic rice hybrids developed from ten newly developed CMS lines and seven testers were evaluated for grain yield and its components at Hybrid rice scheme, ZARS, V. C. Farm, Mandya. Among the lines, CMS 2 had significant gca effects at 1% level of significance in desired direction for four traits viz., panicle weight, pollen fertility, spikelet fertility and number of spikelets per pan- icle. Out of seven testers, KMR 3 found to be good general combiner for five traits viz., days to 50 per cent flower- ing, plant height, number of tillers per plant, number of panicles per plant and grain L/B ratio. Among the 70 hybrids, CMS1 × KMR3 was good specific combiner for grain yield per plant and grain L/B ratio. It further revealed that SCA variances were higher than the GCA variances for all the characters which indicated preponderance of non-additive gene action. Hence, CMS 2 and KMR 3 are identified as promising lines which can be used in further breeding pro- gramme

    Malignant transformation of a recurrent giant cell tumor of bone with lung metastasis: a case report

    Get PDF
    Giant cell tumors (GCT) are benign tumors with potential for aggressive behaviour and capacity to metastasize. It is a locally destructive tumor that occurs predominantly in long bones of adolescents and young adults in the epiphysis. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi-nucleated giant cells with homogenous distribution. There are varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favour an intralesional approach that preserves anatomy of bone. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Malignant transformation without radiotherapy exposure, is an uncommon event, occurring in less than 1% of giant cell tumors of bone. Here we reported a case of recurrent GCT of tibia that at the time of final recurrence was found to have undergone malignant transformation over a period of 6 years following several limb salvaging procedures. Concurrent metastases were found in the lung, but these were non-transformed GCT following which the patient has undergone above knee amputation

    Fabrication, Mechanical and Wear Properties of Aluminum (Al6061)-Silicon Carbide-Graphite Hybrid Metal Matrix Composites

    Get PDF
    In recent times, the use of aluminum alloy-based Hybrid Metal Matrix Composites (HMMCs) is being increased in aerospace and automotive applications. HMMCs compensate for the low desirable properties of each filler used. However, the mechanical properties of HMMCs are not well understood. In particular, microstructural investigations and wear optimization studies of HMMCs are not clear. Therefore, further studies are required. The present study is aimed at fabricating and mechanical and wear characterizing and microstructure investigating of Silicon Carbide (SiC) and Graphite (Gr) added in Aluminum (Al) alloy Al6061 HMMCs. The addition of SiC particles was in the range from 0 to 9 weight percentage (wt.%) in steps of 3, along with the addition of 1 wt.% Gr in powder form. The presence of alloying elements in the Al6061 alloy was identified using the Energy Dispersive X-Ray Analysis (EDX). The dispersion of SiC and Gr particles in the alloy was investigated using metallurgical microscope and Scanning Electron Microscopy (SEM). The gain in strength can be attributed to the growth in dislocation density. The nature of fracture was quasi-cleavage. The microstructure examination reveals the uniform dispersion of the reinforcement. Density, hardness, and Ultimate Tensile Strength values observed to be increased with increased contents of SiC reinforcement. Besides, wear studies were performed in dry sliding conditions. Optimization studies were performed to investigate the effect of parameters that affecting the wear. The sliding wear resistance was noticed to be improved concerning higher amounts of reinforcement leading to a decrease in delamination and adhesive wear. The predicted values for the wear rate have also been compared with the experimental results and good correlation is obtained

    The discretised harmonic oscillator: Mathieu functions and a new class of generalised Hermite polynomials

    Full text link
    We present a general, asymptotical solution for the discretised harmonic oscillator. The corresponding Schr\"odinger equation is canonically conjugate to the Mathieu differential equation, the Schr\"odinger equation of the quantum pendulum. Thus, in addition to giving an explicit solution for the Hamiltonian of an isolated Josephon junction or a superconducting single-electron transistor (SSET), we obtain an asymptotical representation of Mathieu functions. We solve the discretised harmonic oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into an infinite set of algebraic equations which are later shown to be satisfied by the obtained solution. The proposed ansatz defines a new class of generalised Hermite polynomials which are explicit functions of the coupling parameter and tend to ordinary Hermite polynomials in the limit of vanishing coupling constant. The polynomials become orthogonal as parts of the eigenvectors of a Hermitian matrix and, consequently, the exponential part of the solution can not be excluded. We have conjectured the general structure of the solution, both with respect to the quantum number and the order of the expansion. An explicit proof is given for the three leading orders of the asymptotical solution and we sketch a proof for the asymptotical convergence of eigenvectors with respect to norm. From a more practical point of view, we can estimate the required effort for improving the known solution and the accuracy of the eigenvectors. The applied method can be generalised in order to accommodate several variables.Comment: 18 pages, ReVTeX, the final version with rather general expression

    Comparison of early warning scores for sepsis early identification and prediction in the general ward setting

    Get PDF
    The objective of this study was to directly compare the ability of commonly used early warning scores (EWS) for early identification and prediction of sepsis in the general ward setting. For general ward patients at a large, academic medical center between early-2012 and mid-2018, common EWS and patient acuity scoring systems were calculated from electronic health records (EHR) data for patients that both met and did not meet Sepsis-3 criteria. For identification of sepsis at index time, National Early Warning Score 2 (NEWS 2) had the highest performance (area under the receiver operating characteristic curve: 0.803 [95% confidence interval [CI]: 0.795-0.811], area under the precision recall curves: 0.130 [95% CI: 0.121-0.140]) followed NEWS, Modified Early Warning Score, and quick Sequential Organ Failure Assessment (qSOFA). Using validated thresholds, NEWS 2 also had the highest recall (0.758 [95% CI: 0.736-0.778]) but qSOFA had the highest specificity (0.950 [95% CI: 0.948-0.952]), positive predictive value (0.184 [95% CI: 0.169-0.198]), and F1 score (0.236 [95% CI: 0.220-0.253]). While NEWS 2 outperformed all other compared EWS and patient acuity scores, due to the low prevalence of sepsis, all scoring systems were prone to false positives (low positive predictive value without drastic sacrifices in sensitivity), thus leaving room for more computationally advanced approaches

    On the role of different Skyrme forces and surface corrections in exotic cluster-decay

    Full text link
    We present cluster decay studies of 56^{56}Ni^* formed in heavy-ion collisions using different Skyrme forces. Our study reveals that different Skyrme forces do not alter the transfer structure of fractional yields significantly. The cluster decay half-lives of different clusters lies within \pm 10% for PCM and \pm 15% for UFM.Comment: 13 pages,6 figures and 1 table; in press Pramana Journal of Physics (2010

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    Origin of femtosecond laser induced periodic nanostructure on diamond

    Get PDF
    We study the evolution of periodic nanostructures formed on the surface of diamond by femtosecond laser irradiation delivering 230 fs pulses at 1030 nm and 515 nm wavelengths with a repetition rate of 250 kHz. Using scanning electron microscopy, we observe a change in the periodicity of the nanostructures by varying the number of pulses overlapping in the laser focal volume. We simulate the evolution of the period of the high spatial frequency laser induced periodic surface structures at the two wavelengths as a function of number of pulses, accounting for the change in the optical properties of diamond via a generalized plasmonic model. We propose a hypothesis that describes the origin of the nanostructures and the principal role of plasmonic excitation in their formation during multipulse femtosecond laser irradiation
    corecore