159 research outputs found

    Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques

    Get PDF
    Human Activity Recognition (HAR) has been a popular area of research in the Internet of Things (IoT) and Human–Computer Interaction (HCI) over the past decade. The objective of this field is to detect human activities through numeric or visual representations, and its applications include smart homes and buildings, action prediction, crowd counting, patient rehabilitation, and elderly monitoring. Traditionally, HAR has been performed through vision-based, sensor-based, or radar-based approaches. However, vision-based and sensor-based methods can be intrusive and raise privacy concerns, while radar-based methods require special hardware, making them more expensive. WiFi-based HAR is a cost-effective alternative, where WiFi access points serve as transmitters and users’ smartphones serve as receivers. The HAR in this method is mainly performed using two wireless-channel metrics: Received Signal Strength Indicator (RSSI) and Channel State Information (CSI). CSI provides more stable and comprehensive information about the channel compared to RSSI. In this research, we used a convolutional neural network (CNN) as a classifier and applied edge-detection techniques as a preprocessing phase to improve the quality of activity detection. We used CSI data converted into RGB images and tested our methodology on three available CSI datasets. The results showed that the proposed method achieved better accuracy and faster training times than the simple RGB-represented data. In order to justify the effectiveness of our approach, we repeated the experiment by applying raw CSI data to long short-term memory (LSTM) and Bidirectional LSTM classifiers

    ILSF, A THIRD GENERATION LIGHT SOURCE LABORATORY IN IRAN

    Get PDF
    Abstract The Iranian Light Source Facility (ILSF) project is a first large scale accelerator facility which is currently under planning in Iran. On the basis of the present design, circumference of the 3 GeV storage ring is 297.6 m. Beam current and natural beam emittance are 400 mA and 3.278 nm.rad respectively. The facility will be built on a land of 50 hectares area in the city of Qazvin, located 150 km West of Tehran. The city is surrounded by many universities, research centers and industrial companies. The design and construction of prototype items such as radio frequency solid state amplifier, dipole magnets, highly stable magnet power supplies and girders have already begun. Site selection studies, including geotechnical and seismological measurements are being performed. Conceptual Design Report, CDR, as the first milestone of the project was published in October 2012

    COMPARE CPM-RMI Trial: Intramyocardial transplantation of autologous bone marrow-derived CD133+ Cells and MNCs during CABG in patients with recent MI: A Phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial

    Get PDF
    Objective: The regenerative potential of bone marrow-derived mononuclear cells (MNCs) and CD133+ stem cells in the heart varies in terms of their pro-angiogenic effects. This phase II/III, multicenter and double-blind trial is designed to compare the functional effects of intramyocardial autologous transplantation of both cell types and placebo in patients with recent myocardial infarction (RMI) post-coronary artery bypass graft. Materials and Methods: This was a phase II/III, randomized, double-blind, placebo-controlled trial COMPARE CPM-RMI (CD133, Placebo, MNCs - recent myocardial infarction) conducted in accordance with the Declaration of Helsinki that assessed the safety and efficacy of CD133 and MNCs compared to placebo in patients with RMI. We randomly assigned 77 eligible RMI patients selected from 5 hospitals to receive CD133+ cells, MNC, or a placebo. Patients underwent gated single photon emission computed tomography assessments at 6 and 18 months post-intramyocardial transplantation. We tested the normally distributed efficacy outcomes with a mixed analysis of variance model that used the entire data set of baseline and between-group comparisons as well as within subject (time) and group�time interaction terms. Results: There were no related serious adverse events reported. The intramyocardial transplantation of both cell types increased left ventricular ejection fraction by 9 95% confidence intervals (CI): 2.14% to 15.78%, P=0.01 and improved decreased systolic wall thickening by -3.7 (95% CI: -7.07 to -0.42, P=0.03). The CD133 group showed significantly decreased non-viable segments by 75% (P=0.001) compared to the placebo and 60% (P=0.01) compared to the MNC group. We observed this improvement at both the 6- and 18-month time points. Conclusion: Intramyocardial injections of CD133+ cells or MNCs appeared to be safe and efficient with superiority of CD133+ cells for patients with RMI. Although the sample size precluded a definitive statement about clinical outcomes, these results have provided the basis for larger studies to confirm definitive evidence about the efficacy of these cell types (Registration Number: NCT01167751). © 2018 Royan Institute (ACECR). All Rights Reserved

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study

    Get PDF
    Since Dec. 2019 the new coronavirus (SARS-CoV-2) has infected millions and claimed life of several hundred thousand worldwide. However, so far no approved vaccine or drug therapy is available for treatment of virus infection. Convalescent plasma has been considered a potential modality for COVID-19 infection. One hundred eighty-nine COVID-19 positive patients including 115 patients in plasma therapy group and 74 patients in control group, registered in the hospitals with confirmed COVID-19 infection, entered this multi-center clinical study. Comparison of outcomes including all-cause mortality, total hospitalization days and patients� need for intubation between the two patient groups shows that total of 98 (98.2 ) of patients who received convalescent plasma were discharged from hospital which is substantially higher compared to 56 (78.7 ) patients in control group. Length of hospitalization days was significantly lower (9.54 days) in convalescent plasma group compared with that of control group (12.88 days). Only 8 patients (7) in convalescent plasma group required intubation while that was 20 in control group. This clinical study provides strong evidence to support the efficacy of convalescent plasma therapy in COVID-19 patients and recommends this treatment for management of these patients. Clinical efficacy, immediate availability and potential cost effectiveness could be considered as main advantages of convalescent plasma therapy. © 2020 Elsevier Lt

    The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa

    Full text link
    Despite much success in drug design and development, Pseudomonas aeruginosa is still considered as one of the most problematic bacteria due to its ability to develop mutational resistance against a variety of antibiotics. In search for new strategies to enhance antibacterial activity of antibiotics, in this work, the combination effect of gold materials including trivalent gold ions (Au ) and gold nanoparticles (Au NPs) with 14 different antibiotics was investigated against the clinical isolates of P. aeruginosa, Staphylococcus aureus and Escherichia coli. Disk diffusion assay was carried out, and test strains were treated with the sub-inhibitory contents of gold nanomaterial. Results showed that Au NPs did not increase the antibacterial effect of antibiotics at tested concentration (40 μg/disc). However, the susceptibility of resistant P. aeruginosa increased in the presence of Au and methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid, up to 147 %. As an individual experiment, the same group of antibiotics was tested for their activity against clinical isolates of S. aureus, E. coli and a different resistant strain of P. aeruginosa in the presence of sub-inhibitory contents of Au , where Au increased the susceptibility of test strains to methicillin, erythromycin, vancomycin, penicillin G, clindamycin and nalidixic acid. Our finding suggested that using the combination of sub-inhibitory concentrations of Au and methicillin, erythromycin, nalidixic acid or vancomycin may be a promising new strategy for the treatment of highly resistant P. aeruginosa infections

    4E assessment of power generation systems for a mobile house in emergency condition using solar energy: a case study

    Get PDF
    In this study, a solar parabolic trough concentrator (PTC) was evaluated as a heat source of a power generation system based on energy (E1), exergy (E2), environmental (E3), and economic (E4) analyses. Various configurations of power generation systems were investigated, including the solar SRC (SRC) and solar ORC (ORC). Water and R113 were used as heat transfer fluids of SRC and ORC system, respectively. It should be mentioned that the proposed solar systems were evaluated for providing the required power of a mobile house in an emergency condition such as an earthquake that was happened in Kermanshah, Iran, in 2016 with many homeless people. The PTC system was optically and thermally investigated based on sensitivity analysis. The optimized PTC system was assumed as a heat source of the RC with two various configurations for power generation. Then, the solar RC systems were investigated based on 4E analyses for providing the power of the mobile house based on various numbers of solar RC units. It was concluded that the solar SRC system could be recommended for achieving the highest 4E performance. The highest value of its energy efficiency was found at 24.60% and of his exergy at 26.37%. On the other hand, the ORC system has energy and exergy efficiencies at 17.64% and 18.91%, respectively, which are significantly lower than the efficiencies of the SRC system. The optimum heat source temperature for the SRC system is found at 650 K, while for the ORC system at 499 K. Moreover, the best economic performance was found with the SRC system with a payback period of 7.47 years. Finally, the CO2 mitigated per annum (φCO2) was estimated at 5.29 (tones year−1), and the carbon credit (ZCO2) was calculated equal to 76.71 ($ year−1)
    corecore