44 research outputs found

    Mutations in Drosophila tRNA processing factors cause phenotypes similar to Pontocerebellar Hypoplasia

    Get PDF
    Mature transfer (t)RNAs are generated by multiple RNA processing events, which can include the excision of intervening sequences. The tRNA splicing endonuclease (TSEN) complex is responsible for cleaving these intron-containing pre-tRNA transcripts. In humans, TSEN copurifies with CLP1, an RNA kinase. Despite extensive work on CLP1, its in vivo connection to tRNA splicing remains unclear. Interestingly, mutations in CLP1 or TSEN genes cause neurological diseases in humans that are collectively termed Pontocerebellar Hypoplasia (PCH). In mice, loss of Clp1 kinase activity results in premature death, microcephaly and progressive loss of motor function. To determine if similar phenotypes are observed in Drosophila, we characterized mutations in crowded-by-cid (cbc), the CLP1 ortholog, as well as in the fly ortholog of human TSEN54. Analyses of organismal viability, larval locomotion and brain size revealed that mutations in both cbc and Tsen54 phenocopy those in mammals in several details. In addition to an overall reduction in brain lobe size, we also found increased cell death in mutant larval brains. Ubiquitous or tissue-specific knockdown of cbc in neurons and muscles reduced viability and locomotor function. These findings indicate that we can successfully model PCH in a genetically-tractable invertebrate

    Interaction between FLASH and Lsm11 is essential for histone pre-mRNA processing in vivo in Drosophila

    Get PDF
    Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3′ end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105–154 of dFLASH bind to amino acids 1–78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies

    Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention

    Get PDF
    OBJECTIVES: This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI). BACKGROUND: CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI. METHODS: After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights. RESULTS: Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60). CONCLUSIONS: These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value

    Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes

    Get PDF
    Objectives: One of the theories connecting enterovirus (EV) infection of human islets with type 1 diabetes (T1D) is the development of a fertile field in the islets. This implies induction of appropriate proteins for the viral replication such as the coxsackie–adenovirus receptor (CAR). The aim of this study was to investigate to what extent CAR is expressed in human islets of Langerhans, and what conditions that would change the expression. Design: Immunohistochemistry for CAR was performed on paraffin-embedded pancreatic tissue from patients with T1D (n=9 recent onset T1D, n=4 long-standing T1D), islet autoantibody-positive individuals (n=14) and non-diabetic controls (n=24) individuals. The expression of CAR was also examined by reverse transcription PCR on microdissected islets (n=5), exocrine tissue (n=5) and on explanted islets infected with EV or exposed to chemokines produced by EV-infected islet cells. Results: An increased frequency of patients with T1D and autoantibody-positive individuals expressed CAR in the pancreas (p<0.039). CAR staining was detected more frequently in pancreatic islets from patients with T1D and autoantibody-positive subjects (15/27) compared with (6/24) non-diabetic controls (p<0.033). Also in explanted islets cultured in UV-treated culture medium from coxsackievirus B (CBV)-1-infected islets, the expression of the CAR gene was increased compared with controls. Laser microdissection of pancreatic tissue revealed that CAR expression was 10-fold higher in endocrine compared with exocrine cells of the pancreas. CAR was also expressed in explanted islets and the expression level decreased with time in culture. CBV-1 infection of explanted islets clearly decreased the expression of CAR (p<0.05). In contrast, infection with echovirus 6 did not affect the expression of CAR. Conclusions: CAR is expressed in pancreatic islets of patients with T1D and the expression level of CAR is increased in explanted islets exposed to proinflammatory cytokines/chemokines produced by infected islets. T1D is associated with increased levels of certain chemokines/cytokines in the islets and this might be the mechanism behind the increased expression of CAR in TID islets

    The Tyrphostin Agent AG490 Prevents and Reverses Type 1 Diabetes in NOD Mice

    Get PDF
    <div><h3>Background</h3><p>Recent studies in the NOD (non-obese diabetic) mouse model of type 1 diabetes (T1D) support the notion that tyrosine kinase inhibitors have the potential for modulating disease development. However, the therapeutic effects of AG490 on the development of T1D are unknown.</p> <h3>Materials and Methods</h3><p>Female NOD mice were treated with AG490 (i.p, 1 mg/mouse) or DMSO starting at either 4 or 8 week of age, for five consecutive week, then once per week for 5 additional week. Analyses for the development and/or reversal of diabetes, insulitis, adoptive transfer, and other mechanistic studies were performed.</p> <h3>Results</h3><p>AG490 significantly inhibited the development of T1D (p = 0.02, p = 0.005; at two different time points). Monotherapy of newly diagnosed diabetic NOD mice with AG490 markedly resulted in disease remission in treated animals (n = 23) in comparision to the absolute inability (0%; 0/10, p = 0.003, Log-rank test) of DMSO and sustained eugluycemia was maintained for several months following drug withdrawal. Interestingly, adoptive transfer of splenocytes from AG490 treated NOD mice failed to transfer diabetes to recipient NOD.<em>Scid</em> mice. CD4 T-cells as well as bone marrow derived dendritic cells (BMDCs) from AG490 treated mice, showed higher expression of Foxp3 (p<0.004) and lower expression of co-stimulatory molecules, respectively. Screening of the mouse immune response gene arrary indicates that expression of costimulaotry molecule Ctla4 was upregulated in CD4+ T-cell in NOD mice treated with AG490, suggesting that AG490 is not a negative regulator of the immune system.</p> <h3>Conclusion</h3><p>The use of such agents, given their extensive safety profiles, provides a strong foundation for their translation to humans with or at increased risk for the disease.</p> </div

    Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention

    Get PDF
    OBJECTIVES: This multicenter pragmatic investigation assessed outcomes following clinical implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention (PCI). BACKGROUND: CYP2C19 loss-of-function alleles impair clopidogrel effectiveness after PCI. METHODS: After clinical genotyping, each institution recommended alternative antiplatelet therapy (prasugrel, ticagrelor) in PCI patients with a loss-of-function allele. Major adverse cardiovascular events (defined as myocardial infarction, stroke, or death) within 12 months of PCI were compared between patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy. Risk was also compared between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy. Cox regression was performed, adjusting for group differences with inverse probability of treatment weights. RESULTS: Among 1,815 patients, 572 (31.5%) had a loss-of-function allele. The risk for major adverse cardiovascular events was significantly higher in patients with a loss-of-function allele prescribed clopidogrel versus alternative therapy (23.4 vs. 8.7 per 100 patient-years; adjusted hazard ratio: 2.26; 95% confidence interval: 1.18 to 4.32; p = 0.013). Similar results were observed among 1,210 patients with acute coronary syndromes at the time of PCI (adjusted hazard ratio: 2.87; 95% confidence interval: 1.35 to 6.09; p = 0.013). There was no difference in major adverse cardiovascular events between patients without a loss-of-function allele and loss-of-function allele carriers prescribed alternative therapy (adjusted hazard ratio: 1.14; 95% confidence interval: 0.69 to 1.88; p = 0.60). CONCLUSIONS: These data from real-world observations demonstrate a higher risk for cardiovascular events in patients with a CYP2C19 loss-of-function allele if clopidogrel versus alternative therapy is prescribed. A future randomized study of genotype-guided antiplatelet therapy may be of value

    Interaction between FLASH and Lsm11 is essential for histone pre-mRNA processing in vivo in Drosophila

    No full text
    Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3′ end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105–154 of dFLASH bind to amino acids 1–78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies

    Insulin immunization of nonobese diabetic mice induces a protective insulitis characterized by diminished intraislet interferon-gamma transcription.

    No full text
    We reported previously that daily injections of isophane insulin prevented both hyperglycemia and insulitis in nonobese diabetic (NOD) mice (Atkinson, M., N. Maclaren; and R. Luchetta. 1990. Diabetes. 39:933-937). The possible mechanisms responsible include reduced immunogenicity of pancreatic beta-cells from "beta-cell rest" and induced active immunoregulation to insulin (Aaen, IK., J. Rygaard, K. Josefsen, H. Petersen, C. H. Brogren, T. Horn, and K. Buschard. 1990. Diabetes. 39:697-701). We report here that intermittent immunizations with insulin or its metabolically inactive B-chain in incomplete Freund's adjuvant also prevent diabetes in NOD mice, whereas immunizations with A-chain insulin or with BSA do not. Adoptive transfer of splenocytes from B-chain insulin-immunized mice prevented diabetes in recipients co-infused with diabetogenic spleen cells, an effect that was abolished by prior in vivo elimination of either CD4+ or CD8+ cells. Insulin immunization did not reduce the extent of intraislet inflammation (insulitis); however, it did abolish expression of IFN-gamma mRNA within the insulitis lesions. Immunizations with insulin thus induce an active suppressive response to determinants on the B-chain that converts the insulitis lesion from one that is destructive to one that is protective
    corecore