5,297 research outputs found
Sliding friction between an elastomer network and a grafted polymer layer: the role of cooperative effects
We study the friction between a flat solid surface where polymer chains have
been end-grafted and a cross-linked elastomer at low sliding velocity. The
contribution of isolated grafted chains' penetration in the sliding elastomer
has been early identified as a weakly velocity dependent pull-out force. Recent
experiments have shown that the interactions between the grafted chains at high
grafting density modify the friction force by grafted chain. We develop here a
simple model that takes into account those interactions and gives a limit
grafting density beyond which the friction no longer increases with the
grafting density, in good agreement with the experimental dataComment: Submitted to Europhys. Letter
Microscopic theory for the glass transition in a system without static correlations
We study the orientational dynamics of infinitely thin hard rods of length L,
with the centers-of-mass fixed on a simple cubic lattice with lattice constant
a.We approximate the influence of the surrounding rods onto dynamics of a pair
of rods by introducing an effective rotational diffusion constant D(l),l=L/a.
We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a
time-dependent torque-torque correlator of an isolated pair of rods. A glass
transition occurs at l_c, if v(l_c)=1. We present a variational and a
numerically exact evaluation of v(l).Close to l_c the diffusion constant
decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a
glass transition in the absence of any static correlations, in contrast to
present form of mode coupling theory.Comment: 6 pages, 3 figure
On the unsteady behavior of turbulence models
Periodically forced turbulence is used as a test case to evaluate the
predictions of two-equation and multiple-scale turbulence models in unsteady
flows. The limitations of the two-equation model are shown to originate in the
basic assumption of spectral equilibrium. A multiple-scale model based on a
picture of stepwise energy cascade overcomes some of these limitations, but the
absence of nonlocal interactions proves to lead to poor predictions of the time
variation of the dissipation rate. A new multiple-scale model that includes
nonlocal interactions is proposed and shown to reproduce the main features of
the frequency response correctly
An adaptive Metropolis-Hastings scheme: sampling and optimization
We propose an adaptive Metropolis-Hastings algorithm in which sampled data
are used to update the proposal distribution. We use the samples found by the
algorithm at a particular step to form the information-theoretically optimal
mean-field approximation to the target distribution, and update the proposal
distribution to be that approximatio. We employ our algorithm to sample the
energy distribution for several spin-glasses and we demonstrate the superiority
of our algorithm to the conventional MH algorithm in sampling and in annealing
optimization.Comment: To appear in Europhysics Letter
Generating multimedia presentations: from plain text to screenplay
In many Natural Language Generation (NLG) applications, the output is limited to plain text – i.e., a string of words with punctuation and paragraph breaks, but no indications for layout, or pictures, or dialogue. In several projects, we have begun to explore NLG applications in which these extra media are brought into play. This paper gives an informal account of what we have learned. For coherence, we focus on the domain of patient information leaflets, and follow an example in which the same content is expressed first in plain text, then in formatted text, then in text with pictures, and finally in a dialogue script that can be performed by two animated agents. We show how the same meaning can be mapped to realisation patterns in different media, and how the expanded options for expressing meaning are related to the perceived style and tone of the presentation. Throughout, we stress that the extra media are not simple added to plain text, but integrated with it: thus the use of formatting, or pictures, or dialogue, may require radical rewording of the text itself
Phase transition curves for mesoscopic superconducting samples
We compute the phase transition curves for mesoscopic superconductors.
Special emphasis is given to the limiting shape of the curve when the magnetic
flux is large. We derive an asymptotic formula for the ground state of the
Schr\"odinger equation in the presence of large applied flux. The expansion is
shown to be sensitive to the smoothness of the domain. The theoretical results
are compared to recent experiments.Comment: 8 pages, 1 figur
Numerical Ricci-flat metrics on K3
We develop numerical algorithms for solving the Einstein equation on
Calabi-Yau manifolds at arbitrary values of their complex structure and Kahler
parameters. We show that Kahler geometry can be exploited for significant gains
in computational efficiency. As a proof of principle, we apply our methods to a
one-parameter family of K3 surfaces constructed as blow-ups of the T^4/Z_2
orbifold with many discrete symmetries. High-resolution metrics may be obtained
on a time scale of days using a desktop computer. We compute various geometric
and spectral quantities from our numerical metrics. Using similar resources we
expect our methods to practically extend to Calabi-Yau three-folds with a high
degree of discrete symmetry, although we expect the general three-fold to
remain a challenge due to memory requirements.Comment: 38 pages, 10 figures; program code and animations of figures
downloadable from http://schwinger.harvard.edu/~wiseman/K3/ ; v2 minor
corrections, references adde
Static and dynamic properties of large polymer melts in equilibrium
We present a detailed study of the static and dynamic behavior of long
semiflexible polymer chains in a melt. Starting from previously obtained fully
equilibrated high molecular weight polymer melts [{\it Zhang et al.} ACS Macro
Lett. 3, 198 (2014)] we investigate their static and dynamic scaling behavior
as predicted by theory. We find that for semiflexible chains in a melt, results
of the mean square internal distance, the probability distributions of the
end-to-end distance, and the chain structure factor are well described by
theoretical predictions for ideal chains. We examine the motion of monomers and
chains by molecular dynamics simulations using the ESPResSo++ package. The
scaling predictions of the mean squared displacement of inner monomers, center
of mass, and relations between them based on the Rouse and the reptation theory
are verified, and related characteristic relaxation times are determined.
Finally we give evidence that the entanglement length as determined
by a primitive path analysis (PPA) predicts a plateau modulus,
, consistent with stresses obtained from the
Green-Kubo relation. These comprehensively characterized equilibrium
structures, which offer a good compromise between flexibility, small ,
computational efficiency, and small deviations from ideality provide ideal
starting states for future non-equilibrium studies.Comment: 13 pages, 10 figures, to be published in J. Chem. Phys. (2016
- …