5,807 research outputs found

    Low-Complexity Energy-Efficient Broadcasting in One-Dimensional Wireless Networks

    Full text link
    In this paper, we investigate the transmission range assignment for N wireless nodes located on a line (a linear wireless network) for broadcasting data from one specific node to all the nodes in the network with minimum energy. Our goal is to find a solution that has low complexity and yet performs close to optimal. We propose an algorithm for finding the optimal assignment (which results in the minimum energy consumption) with complexity O(N^2). An approximation algorithm with complexity O(N) is also proposed. It is shown that, for networks with uniformly distributed nodes, the linear-time approximate solution obtained by this algorithm on average performs practically identical to the optimal assignment. Both the optimal and the suboptimal algorithms require the full knowledge of the network topology and are thus centralized. We also propose a distributed algorithm of negligible complexity, i.e., with complexity O(1), which only requires the knowledge of the adjacent neighbors at each wireless node. Our simulations demonstrate that the distributed solution on average performs almost as good as the optimal one for networks with uniformly distributed nodes.Comment: 17 page

    Crossing the Phantom Divide

    Get PDF
    We consider fluid perturbations close to the "phantom divide" characterised by p = -rho and discuss the conditions under which divergencies in the perturbations can be avoided. We find that the behaviour of the perturbations depends crucially on the prescription for the pressure perturbation delta-p. The pressure perturbation is usually defined using the dark energy rest-frame, but we show that this frame becomes unphysical at the divide. If the pressure perturbation is kept finite in any other frame, then the phantom divide can be crossed. Our findings are important for generalised fluid dark energy used in data analysis (since current cosmological data sets indicate that the dark energy is characterised by p ~ -rho so that p < -rho cannot be excluded) as well as for any models crossing the phantom divide, like some modified gravity, coupled dark energy and braneworld models. We also illustrate the results by an explicit calculation for the "Quintom" case with two scalar fields.Comment: 14 pages, 10 figures, v2: updated to agree with published version: more readable figures, slightly expanded discussion on modified gravity models and the interpolation across w=-1, results and conclusions unchange

    Cosmic Microwave Background Anisotropies from Scaling Seeds: Fit to Observational Data

    Get PDF
    We compute cosmic microwave background angular power spectra for scaling seed models of structure formation. A generic parameterization of the energy momentum tensor of the seeds is employed. We concentrate on two regions of parameter space inspired by global topological defects: O(4) texture models and the large-N limit of O(N) models. We use χ2\chi^{2} fitting to compare these models to recent flat-band power measurements of the cosmic microwave background. Only scalar perturbations are considered.Comment: LaTeX file 4 pages, 4 postscript figs. revised version, to appear in PR

    Non-uniqueness, Counterrotation, and Negative Horizon Mass of Einstein-Maxwell-Chern-Simons Black Holes

    Get PDF
    Stationary black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory possess surprising properties. When considering the Chern-Simons coefficient λ\lambda as a parameter, two critical values of λ\lambda appear: the supergravity value λSG=1\lambda_{\rm SG}=1, and the value λ=2\lambda=2. At λ=1\lambda=1, supersymmetric black holes with vanishing horizon angular velocity, but finite angular momentum exist. As λ\lambda increases beyond λSG\lambda_{\rm SG} a rotational instability arises, and counterrotating black holes appear, whose horizon rotates in the opposite sense to the angular momentum. Thus supersymmetry is associated with the borderline between stability and instability. At λ=2\lambda=2 rotating black holes with vanishing angular momentum emerge. Beyond λ=2\lambda=2 black holes may possess a negative horizon mass, while their total mass is positive. Charged rotating black holes with vanishing gyromagnetic ratio appear, and black holes are no longer uniquely characterized by their global charges.Comment: 15 pages, 16 figures, MPLA style, invited review for Modern Physics Letters

    Vapor chamber fin studies. Operating characteristics of fin models

    Get PDF
    Operating characteristics and limits of vapor chamber fins or heat pipe

    Vapor-chamber fin studies First quarterly report, May 28 - Aug. 28, 1965

    Get PDF
    Mechanistic model and vapor-chamber fin heat transport operation for application to space power plant radiator

    Ar-40 to Ar-39 dating of pseudotachylites from the Witwatersrand basin, South Africa, with implications for the formation of the Vredefort Dome

    Get PDF
    The formation of the Vredefort Dome, a structure in excess of 100 km in diameter and located in the approximate center of the Witwatersrand basin, is still the subject of lively geological controversy. It is widely accepted that its formation seems to have taken place in a single sudden event, herein referred to as the Vredefort event, accompanied by the release of gigantic amounts of energy. It is debated, however, whether this central event was an internal one, i.e., a cryptoexplosion triggered by volcanic or tectonic processes, or the impact of an extraterrestrial body. The results of this debate are presented

    Measuring the effective complexity of cosmological models

    Get PDF
    We introduce a statistical measure of the effective model complexity, called the Bayesian complexity. We demonstrate that the Bayesian complexity can be used to assess how many effective parameters a set of data can support and that it is a useful complement to the model likelihood (the evidence) in model selection questions. We apply this approach to recent measurements of cosmic microwave background anisotropies combined with the Hubble Space Telescope measurement of the Hubble parameter. Using mildly non-informative priors, we show how the 3-year WMAP data improves on the first-year data by being able to measure both the spectral index and the reionization epoch at the same time. We also find that a non-zero curvature is strongly disfavored. We conclude that although current data could constrain at least seven effective parameters, only six of them are required in a scheme based on the Lambda-CDM concordance cosmology.Comment: 9 pages, 4 figures, revised version accepted for publication in PRD, updated with WMAP3 result
    • …
    corecore