2,422 research outputs found

    Challenging the orthodoxy: union learning representatives as organic intellectuals

    Get PDF
    Teacher education and continuing professional development have become a key areas of controversy in England since the period of school sector restructuring following the 1988 Education Reform Act. More recently teacher training and professional development have often been used to promote and reinforce a narrow focus on the government’s ‘standards agenda’. However, the emerging discourse of ‘new professionalism’ has raised the profile of professional development in schools, and together with union learning representatives, there are opportunities to secure real improvements in teachers’ access to continuing professional development. This paper argues however that union learning representatives must go beyond advocating for better access to professional development and should raise more fundamental questions about the nature of professional development and the education system it serves. Drawing on Gramsci’s notion of the ‘organic intellectual’, the paper argues that union learning representatives have a key role as organisers of ideas – creating spaces in which the ideological dominance of current policy orthodoxy might be challenged

    Black Hole - Neutron Star Mergers as Central Engines of Gamma-Ray Bursts

    Get PDF
    Hydrodynamic simulations of the merger of stellar mass black hole - neutron star binaries (BH/NS) are compared with mergers of binary neutron stars (NS/NS). The simulations are Newtonian, but take into account the emission and backreaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star to black hole mass ratios the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is already distroyed during its first approach. A gas mass between about 0.3 and about 0.7 solar masses is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several 10^{53} erg/s during an estimated accretion time scale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into electron-positron pairs with efficiencies of 1-3% percent and rates of up to 2*10^{52} erg/s, thus depositing an energy of up to 10^{51} erg above the poles of the black hole in a region which contains less than 10^{-5} solar masses of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities of up to several 10^{53} erg/s for burst durations of approximately 0.1-1 s, if the gamma emission is collimated in two moderately focussed jets in a fraction of about 1/100-1/10 of the sky.Comment: 8 pages, LaTex, 4 postscript figures, 2 tables. ApJ Letters, accepted; revised and shortened version, Fig. 2 change

    Effects of neutrino-driven kicks on the supernova explosion mechanism

    Full text link
    We show that neutrino-driven pulsar kicks can increase the energy of the supernova shock. The observed large velocities of pulsars are believed to originate in the supernova explosion, either from asymmetries in the ejecta or from an anisotropic emission of neutrinos (or other light particles) from the cooling neutron star. In this paper we assume the velocities are caused by anisotropic neutrino emission and study the effects of these neutrino-driven kicks on the supernova explosion. We find that if the collapsed star is marginally unable to produce an explosion, the neutrino-driven mechanisms can drive the convection to make a successful explosion. The resultant explosion is asymmetric, with the strongest ejecta motion roughly in the direction of the neutron star kick. This is in sharp contrast with the ejecta-driven mechanisms, which predict the motion of the ejecta in the opposite direction. This difference can be used to distinguish between the two mechanisms based on the observations of the supernova remnants.Comment: 22 pages including 8 figures, submitted to ApJ, version with high resolution figures can be found at http://qso.lanl.gov/~cl

    Influence of the r-mode instability on hypercritically accreting neutron stars

    Get PDF
    We have investigated an influence of the r-mode instability on hypercritically accreting (M˙∌1M⊙y−1\dot{M}\sim 1M_\odot {y}^{-1}) neutron stars in close binary systems during their common envelope phases based on the scenario proposed by Bethe et al. \shortcite{bethe-brown-lee}. On the one hand neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency. The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning-up of the star, whose final rotational frequency is well below the mass-shedding limit, typically as small as 10% of that of the mass-shedding state. On a very short time scale the rotational frequency tends to approach a certain constant value and saturates there as far as the amount of the accreted mass does not exceed a certain limit to collapse to a black hole. This implies that the similar mechanism of gravitational radiation as the so-called Wagoner star may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by the gravitational wave detectors such as LIGO II.Comment: 6 pages, 3 figure

    Double Neutron Star Systems and Natal Neutron Star Kicks

    Get PDF
    We study the four double neutron star systems found in the Galactic disk in terms of the orbital characteristics of their immediate progenitors and the natal kicks imparted to neutron stars. Analysis of the effect of the second supernova explosion on the orbital dynamics, combined with recent results from simulations of rapid accretion onto neutron stars lead us to conclude that the observed systems could not have been formed had the explosion been symmetric. Their formation becomes possible if kicks are imparted to the radio-pulsar companions at birth. We identify the constraints imposed on the immediate progenitors of the observed double neutron stars and calculate the ranges within which their binary characteristics (orbital separations and masses of the exploding stars) are restricted. We also study the dependence of these limits on the magnitude of the kick velocity and the time elapsed since the second explosion. For each of the double neutron stars, we derive a minimum kick magnitude required for their formation, and for the two systems in close orbits we find it to exceed 200km/s. Lower limits are also set to the center-of-mass velocities of double neutron stars, and we find them to be consistent with the current proper motion observations.Comment: 25 pages, 6 figs (9 parts), 4 tables, AASTeX, Accepted in Ap

    Parallelization of Kinetic Theory Simulations

    Full text link
    Numerical studies of shock waves in large scale systems via kinetic simulations with millions of particles are too computationally demanding to be processed in serial. In this work we focus on optimizing the parallel performance of a kinetic Monte Carlo code for astrophysical simulations such as core-collapse supernovae. Our goal is to attain a flexible program that scales well with the architecture of modern supercomputers. This approach requires a hybrid model of programming that combines a message passing interface (MPI) with a multithreading model (OpenMP) in C++. We report on our approach to implement the hybrid design into the kinetic code and show first results which demonstrate a significant gain in performance when many processors are applied.Comment: 10 pages, 3 figures, conference proceeding

    Crater lake cichlids individually specialize along the benthic-limnetic axis

    Get PDF
    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic- as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence

    Core-Collapse Simulations of Rotating Stars

    Get PDF
    We present the results from a series of two-dimensional core-collapse simulations using a rotating progenitor star. We find that the convection in these simulations is less vigorous because a) rotation weakens the core bounce which seeds the neutrino-driven convection and b) the angular momentum profile in the rotating core stabilizes against convection. The limited convection leads to explosions which occur later and are weaker than the explosions produced from the collapse of non-rotating cores. However, because the convection is constrained to the polar regions, when the explosion occurs, it is stronger along the polar axis. This asymmetric explosion can explain the polarization measurements of core-collapse supernovae. These asymmetries also provide a natural mechanism to mix the products of nucleosynthesis out into the helium and hydrogen layers of the star. We also discuss the role the collapse of these rotating stars play on the generation of magnetic fields and neutron star kicks. Given a range of progenitor rotation periods, we predict a range of supernova energies for the same progenitor mass. The critical mass for black hole formation also depends upon the rotation speed of the progenitor.Comment: 16 pages text + 13 figures, submitted to Ap

    Modeling Core-Collapse Supernovae in 3-Dimensions

    Full text link
    We present the first complete 3-dimensional simulations of the core-collapse of a massive star from the onset of collapse to the resultant supernova explosion. We compare the structure of the convective instabilities that occur in 3-dimensional models with those of past 2-dimensional simulations. Although the convective instabilities are clearly 3-dimensional in nature, we find that both the size-scale of the flows and the net enhancement to neutrino heating does not differ greatly between 2- and 3-dimensional models. The explosion energy, explosion timescale, and remnant mass does not differ by more than 10% between 2- and 3-dimensional simulations.Comment: 5 pages text, 3 separate figures (see http://qso.lanl.gov/~clf for more info), accepted by Ap

    Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology

    Get PDF
    In proto-neutron stars with strong magnetic fields, the cross section for Îœe\nu_e (Μˉe\bar\nu_e) absorption on neutrons (protons) depends on the local magnetic field strength due to the quantization of energy levels for the e−e^- (e+e^+) produced in the final state. If the neutron star possesses an asymmetric magnetic field topology in the sense that the magnitude of magnetic field in the north pole is different from that in the south pole, then asymmetric neutrino emission may be generated. We calculate the absorption cross sections of \nue and \bnue in strong magnetic fields as a function of the neutrino energy. These cross sections exhibit oscillatory behaviors which occur because new Landau levels for the e−e^- (e+e^+) become accessible as the neutrino energy increases. By evaluating the appropriately averaged neutrino opacities, we demonstrate that the change in the local neutrino flux due to the modified opacities is rather small. To generate appreciable kick velocity (∌300\sim 300 km~s−1^{-1}) to the newly-formed neutron star, the difference in the field strengths at the two opposite poles of the star must be at least 101610^{16}~G. We also consider the magnetic field effect on the spectral neutrino energy fluxes. The oscillatory features in the absorption opacities give rise to modulations in the emergent spectra of Îœe\nu_e and Μˉe\bar\nu_e.Comment: AASTeX, 25 pages. Expanded introduction and references. This revised version was accepted by ApJ in April 1998 (to appear in the Oct 1 issue
    • 

    corecore