2,354 research outputs found

    TeV Cherenkov Events as Bose-Einstein Gamma Condensations

    Get PDF
    The recent detection of gamma radiation from Mkn 501 at energies as high as 25 TeV suggests stringent upper bounds on the diffuse, far infrared, extragalactic radiation density. The production of electron-positron pairs through photon-photon collisions would prevent gamma photons of substantially higher energies from reaching us across distances of order 100 Mpc. However, coherently arriving TeV or sub-TeV gammas - Bose-Einstein condensations of photons at these energies - could mimic the Cherenkov shower signatures of extremely energetic gammas. To better understand such events, we describe their observational traits and discuss how they might be generated.Comment: 12 pages, 2 figures, accepted for publication in Ap.J.(Lett.

    Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks

    Get PDF
    The origin of the micro-Gauss magnetic fields in galaxy clusters is one of the outstanding problem of modern cosmology. We have performed three-dimensional particle-in-cell simulations of the nonrelativistic Weibel instability in an electron-proton plasma, in conditions typical of cosmological shocks. These simulations indicate that cluster fields could have been produced by shocks propagating through the intergalactic medium during the formation of large-scale structure or by shocks within the cluster. The strengths of the shock-generated fields range from tens of nano-Gauss in the intercluster medium to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure

    Correlation effects in total energy of transition metals and related properties

    Full text link
    We present an accurate implementation of total energy calculations into the local density approximation plus dynamical mean-field theory (LDA+DMFT) method. The electronic structure problem is solved through the full potential linear Muffin-Tin Orbital (FP-LMTO) and Korringa-Kohn-Rostoker (FP-KKR) methods with a perturbative solver for the effective impurity suitable for moderately correlated systems. We have tested the method in detail for the case of Ni and investigated the sensitivity of the results to the computational scheme and to the complete self-consistency. It is demonstrated that the LDA+DMFT method can resolve a long-standing controversy between the LDA/GGA density functional approach and experiment for equilibrium lattice constant and bulk modulus of Mn.Comment: 14 pages, 5 figure

    Renormalized spin coefficients in the accumulated orbital phase for unequal mass black hole binaries

    Get PDF
    We analyze galactic black hole mergers and their emitted gravitational waves. Such mergers have typically unequal masses with mass ratio of the order 1/10. The emitted gravitational waves carry the inprint of spins and mass quadrupoles of the binary components. Among these contributions, we consider here the quasi-precessional evolution of the spins. A method of taking into account these third post-Newtonian (3PN) effects by renormalizing (redefining) the 1.5 PN and 2PN accurate spin contributions to the accumulated orbital phase is developed.Comment: 10 pages, to appear in Class. Quantum Grav. GWDAW13 Proceedings Special Issue, v2: no typos conjectur

    Neutrino production through hadronic cascades in AGN accretion disks

    Full text link
    We consider the production of neutrinos in active galactic nuclei (AGN) through hadronic cascades. The initial, high energy nucleons are accelerated in a source above the accretion disk around the central black hole. From the source, the particles diffuse back to the disk and initiate hadronic cascades. The observable output from the cascade are electromagnetic radiation and neutrinos. We use the observed diffuse background X-ray luminosity, which presumably results {}from this process, to predict the diffuse neutrino flux close to existing limits from the Frejus experiment. The resulting neutrino spectrum is E2E^{-2} down to the \GeV region. We discuss modifications of this scenario which reduce the predicted neutrino flux.Comment: 12 Pages, LaTeX, TK 92 0

    Solar Oscillations and Convection: II. Excitation of Radial Oscillations

    Full text link
    Solar p-mode oscillations are excited by the work of stochastic, non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the expression for the radial mode excitation rate derived by Nordlund and Stein (Paper I) using numerical simulations of near surface solar convection. We first apply this expression to the three radial modes of the simulation and obtain good agreement between the predicted excitation rate and the actual mode damping rates as determined from their energies and the widths of their resolved spectral profiles. We then apply this expression for the mode excitation rate to the solar modes and obtain excellent agreement with the low l damping rates determined from GOLF data. Excitation occurs close to the surface, mainly in the intergranular lanes and near the boundaries of granules (where turbulence and radiative cooling are large). The non-adiabatic pressure fluctuations near the surface are produced by small instantaneous local imbalances between the divergence of the radiative and convective fluxes near the solar surface. Below the surface, the non-adiabatic pressure fluctuations are produced primarily by turbulent pressure fluctuations (Reynolds stresses). The frequency dependence of the mode excitation is due to effects of the mode structure and the pressure fluctuation spectrum. Excitation is small at low frequencies due to mode properties -- the mode compression decreases and the mode mass increases at low frequency. Excitation is small at high frequencies due to the pressure fluctuation spectrum -- pressure fluctuations become small at high frequencies because they are due to convection which is a long time scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue). 17 pages, 27 figures, some with reduced resolution -- high resolution versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048

    Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

    Full text link
    We present a simple implementation of the dynamical mean-field theory approach to the electronic structure of strongly correlated materials. This implementation achieves full self-consistency over the charge density, taking into account correlation-induced changes to the total charge density and effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used, and the charge density is computed from moments of the many body momentum-distribution matrix. The calculation of the total energy is also considered, with a proper treatment of high-frequency tails of the Green's function and self-energy. The method is illustrated on two materials with well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the gamma-phase of metallic cerium, using the Hubbard-I approximation to the dynamical mean-field self-energy. The momentum-integrated spectral function and momentum-resolved dispersion of the Hubbard bands are calculated, as well as the volume-dependence of the total energy. We show that full self-consistency over the charge density, taking into account its modification by strong correlations, can be important for the computation of both thermodynamical and spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B

    Spinning compact binary inspiral II: Conservative angular dynamics

    Get PDF
    We establish the evolution equations of the set of independent variables characterizing the 2PN rigorous conservative dynamics of a spinning compact binary, with the inclusion of the leading order spin-orbit, spin-spin and mass quadrupole - mass monopole effects, for generic (noncircular, nonspherical) orbits. More specifically, we give a closed system of first order ordinary differential equations for the orbital elements of the osculating ellipse and for the angles characterizing the spin orientations with respect to the osculating orbit. We also prove that (i) the relative angle of the spins stays constant for equal mass black holes, irrespective of their orientation, and (ii) the special configuration of equal mass black holes with equal, but antialigned spins, both laying in the plane of motion (leading to the largest recoil found in numerical simulations) is preserved at 2PN level of accuracy, with leading order spin-orbit, spin-spin and mass quadrupolar contributions included.Comment: v2: 19 pages, extended, improved, published versio

    Contact Discontinuities in Models of Contact Binaries Undergoing Thermal Relaxation Oscillations

    Get PDF
    In this paper we pursue the suggestion by Shu, Lubow & Anderson (1979) and Wang (1995) that contact discontinuity (DSC) may exist in the secondary in the expansion TRO (thermal relaxation oscillation) state. It is demonstrated that there is a mass exchange instability in some range of mass ratio for the two components. We show that the assumption of {\it constant} volume of the secondary should be relaxed in DSC model. For {\it all} mass ratio the secondary alway satisfies the condition that no mass flow returns to the primary through the inner Lagrangian point. The secondary will expand in order to equilibrate the interaction between the common convective envelope and the secondary. The contact discontinuity in contact binary undergoing thermal relaxation does not violate the second law of thermodynamics. The maintaining condition of contact discontinuity is derived in the time-dependent model. It is desired to improve the TRO model with the advanced contact discontinuity layer in future detailed calculations.Comment: 5 pages in emulateapj, 1 figur
    corecore