326 research outputs found

    Risk Factors for Obesity: Further Evidence for Stronger Effects on Overweight Children and Adolescents Compared to Normal-Weight Subjects

    Get PDF
    Background: We recently showed that in preschoolers risk factors for overweight show stronger associations with BMI in children with high BMI values. However, it is unclear whether these findings might also pertain to adolescents. Methods: We extracted data on 3–10 year-old (n = 7,237) and 11–17 year-old (n = 5,986) children from a representative cross-sectional German health survey (KiGGS) conducted between 2003 and 2006 and calculated quantile regression models for each age group. We used z-scores of children's body mass index (BMI) as outcome variable and maternal BMI, maternal smoking in pregnancy, low parental socioeconomic status, exclusive formula-feeding and high TV viewing time as explanatory variables. Results: In both age groups, the estimated effects of all risk factors except formula-feeding on BMI z-score were greatest for children with the highest BMI z-score. The median BMI z-score of 11–17 year-old children with high TV viewing time, for example, was 0.11 [95% CI: 0.03, 0.19] units higher than the median BMI z-score of teenage children with low TV viewing time. This risk factor was associated with an average difference of 0.18 [0.06, 0.30] units at the 90th percentile of BMI z-score and of 0.20 [0.07, 0.33] units at the 97th percentile. Conclusions: We confirmed that risk factors for childhood overweight are associated with greater shifts in the upper parts of the children's BMI distribution than in the middle and lower parts. These findings pertain also to teenagers and might possibly help to explain the secular shift in the upper BMI percentiles in children and adolescents

    Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Get PDF
    Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed

    Coherent diffractive imaging of microtubules using an X-ray laser

    Get PDF
    X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature

    Bursts in a fiber bundle model with continuous damage

    Full text link
    We study the constitutive behaviour, the damage process, and the properties of bursts in the continuous damage fiber bundle model introduced recently. Depending on its two parameters, the model provides various types of constitutive behaviours including also macroscopic plasticity. Analytic results are obtained to characterize the damage process along the plastic plateau under strain controlled loading, furthermore, for stress controlled experiments we develop a simulation technique and explore numerically the distribution of bursts of fiber breaks assuming infinite range of interaction. Simulations revealed that under certain conditions power law distribution of bursts arises with an exponent significantly different from the mean field exponent 5/2. A phase diagram of the model characterizing the possible burst distributions is constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio

    Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser

    Get PDF
    To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 ÎĽm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Ă… resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 ÎĽm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach

    Alternative regression models to assess increase in childhood BMI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations.</p> <p>Methods</p> <p>Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity.</p> <p>Results</p> <p>GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models.</p> <p>Conclusion</p> <p>GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.</p

    Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    Get PDF
    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids

    Reasons for (Non)Participating in a Telephone-Based Intervention Program for Families with Overweight Children

    Get PDF
    Willingness to participate in obesity prevention programs is low; underlying reasons are poorly understood. We evaluated reasons for (non)participating in a novel telephone-based obesity prevention program for overweight children and their families. percentile) aged 3.5–17.4 years were screened via the CrescNet database, a representative cohort of German children, and program participation (repetitive computer aided telephone counseling) was offered by their local pediatrician. Identical questionnaires to collect baseline data on anthropometrics, lifestyle, eating habits, sociodemographic and psychosocial parameters were analyzed from 433 families (241 participants, 192 nonparticipants). Univariate analyses and binary logistic regression were used to identify factors associated with nonparticipation. percentile) was higher in participants (58.9% vs.38%,p<0.001). Participating girls were younger than boys (8.8 vs.10.4 years, p<0.001). 87.3% and 40% of participants, but only 72.2% and 24.7% of nonparticipants, respectively, reported to have regular breakfasts (p = 0.008) and 5 regular daily meals (p = 0.003). Nonparticipants had a lower household-net-income (p<0.001), but higher subjective physical wellbeing than participants (p = 0.018) and believed that changes in lifestyle can be made easily (p = 0.05).An important reason for nonparticipation was non-awareness of their child's weight status by parents. Nonparticipants, who were often low-income families, believed that they already perform a healthy lifestyle and had a higher subjective wellbeing. We hypothesize that even a low-threshold intervention program does not reach the families who really need it

    Risk factors for childhood obesity: shift of the entire BMI distribution vs. shift of the upper tail only in a cross sectional study

    Get PDF
    Background: Previous studies reported an increase of upper body mass index (BMI) quantiles for formula fed infants compared to breastfed infants, while corresponding mean differences were low. The aim of this study was to assess the impact of known risk factors for childhood obesity on the BMI distribution. Methods: Data on 4,884 children were obtained at obligatory school entry health examinations in Bavaria (Germany). Exposure variables were formula feeding, maternal smoking in pregnancy, excessive TV-watching, low meal frequency, poor parental education, maternal overweight and high infant weight gain. Cumulative BMI distributions and Tukey mean-difference plots were used to assess possible shifts of BMI distributions by exposure. Results: Maternal overweight and high infant weight gain shifted the entire BMI-distribution with an accentuation on upper quantiles to higher BMI values. In contrast, parental education, formula feeding, high TV consumption, low meal frequency and maternal smoking in pregnancy resulted in a shift of upper quantiles only. Conclusion: The single shifts among upper parts of the BMI distribution might be due to effect modification of the corresponding exposures by another environmental exposure or genetic predisposition. Affected individuals might represent a susceptible subpopulation of the exposed
    • …
    corecore