903 research outputs found
Asymmetric diffusion at the interfaces in multilayers
Nanoscale diffusion at the interfaces in multilayers plays a vital role in
controlling their physical properties for a variety of applications. In the
present work depth-dependent interdiffusion in a Si/Fe/Si trilayer has been
studied with sub-nanometer depth resolution, using x ray standing waves. High
depth-selectivity of the present technique allows one to measure diffusion at
the two interfaces of Fe namely, Fe-on-Si and Si-on-Fe, independently, yielding
an intriguing result that Fe diffusivity at the two interfaces is not
symmetric. It is faster at the Fe-on-Si interface. While the values of
activation energy at the two interfaces are comparable, the main difference is
found in the pre-exponent factor suggesting different mechanisms of diffusion
at the two interfaces. This apparently counter-intuitive result has been
understood in terms of an asymmetric structure of the interfaces as revealed by
depth selective conversion electron Mossbauer spectroscopy. A difference in the
surface free energies of Fe and Si can lead to such differences in the
structure of the two interfaces.Comment: 4 pages, 5 figure
Meson-Baryon Form Factors in Chiral Colour Dielectric Model
The renormalised form factors for pseudoscalar meson-baryon coupling are
computed in chiral colour dielectric model. This has been done by rearranging
the Lippmann-Schwinger series for the meson baryon scattering matrix so that it
can be expressed as a baryon pole term with renormalized form factors and
baryon masses and the rest of the terms which arise from the crossed diagrams.
Thus we are able to obtain an integral equation for the renormalized
meson-baryon form factors in terms of the bare form factors as well as an
expression for the meson self energy. This integral equation is solved and
renormalized meson baryon form factors and renormalized baryon masses are
computed. The parameters of the model are adjusted to obtain a best fit to the
physical baryon masses. The calculations show that the renormalized form
factors are energy-dependent and differ from the bare form factors primarily at
momentum transfers smaller than 1 GeV. At nucleon mass, the change in the form
factors is about 10% at zero momentum transfer. The computed form factors are
soft with the equivalent monopole cut-off mass of about 500 MeV. The
renormalized coupling constants are obtained by comparing the chiral colour
dielectric model interaction Hamiltonian with the standard form of
meson-nucleon interaction Hamiltonian. The ratio of and
coupling constants is found to be about 2.15. This value is very close to the
experimental value.Comment: 16 pages, 7 postscript figure
Assessment-schedule matching in unanchored indirect treatment comparisons of progression-free survival in cancer studies
Background
The timing of efficacy-related clinical events recorded at scheduled study visits in clinical trials are interval censored, with the interval duration pre-determined by the study protocol. Events may happen any time during that interval but can only be detected during a planned or unplanned visit. Disease progression in oncology is a notable example where the time to an event is affected by the schedule of visits within a study. This can become a source of bias when studies with varying assessment schedules are used in unanchored comparisons using methods such as matching-adjusted indirect comparisons.
Objective
We illustrate assessment-time bias (ATB) in a simulation study based on data from a recent study in second-line treatment for locally advanced or metastatic urothelial carcinoma, and present a method to adjust for differences in assessment schedule when comparing progression-free survival (PFS) against a competing treatment.
Methods
A multi-state model for death and progression was used to generate simulated death and progression times, from which PFS times were derived. PFS data were also generated for a hypothetical comparator treatment by applying a constant hazard ratio (HR) to the baseline treatment. Simulated PFS times for the two treatments were then aligned to different assessment schedules so that progression events were only observed at set visit times, and the data were analysed to assess the bias and standard error of estimates of HRs between two treatments with and without assessment-schedule matching (ASM).
Results
ATB is highly affected by the rate of the event at the first assessment time; in our examples, the bias ranged from 3 to 11% as the event rate increased. The proposed method relies on individual-level data from a study and attempts to adjust the timing of progression events to the comparator’s schedule by shifting them forward or backward without altering the patients’ actual follow-up time. The method removed the bias almost completely in all scenarios without affecting the precision of estimates of comparative effectiveness.
Conclusions
Considering the increasing use of unanchored comparative analyses for novel cancer treatments based on single-arm studies, the proposed method offers a relatively simple means of improving the accuracy of relative benefits of treatments on progression times
Three flavour Quark matter in chiral colour dielectric model
We investigate the properties of quark matter at finite density and
temperature using the nonlinear chiral extension of Colour Dielectric Model
(CCM). Assuming that the square of the meson fields devlop non- zero vacuum
expectation value, the thermodynamic potential for interacting three flavour
matter has been calculated. It is found that remain zero
in the medium whereas changes in the medium. As a result, and
quark masses decrease monotonically as the temperature and density of the quark
matter is increased.In the present model, the deconfinement density and
temperature is found to be lower compared to lattice results. We also study the
behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.
Luminescence properties of Ti-doped gem-grade zirconia powders
A detailed investigation on luminescence properties of gem-grade zirconia (NFC) as a function of Ti doping is presented. The effect of various parameters such as Ti concentration, environment of heat treatment and temperature was studied in detail and the optimum conditions for producing zirconia with luminescence properties comparable to standard material determined
- …