633 research outputs found

    Magnetic fluctuations and superconductivity in Fe pnictides probed by electron spin resonance

    Full text link
    The electron spin resonance absorption spectrum of Eu^{2+} ions serves as a probe of the normal and superconducting state in Eu_{0.5}K_{0.5}Fe_2As_2. The spin-lattice relaxation rate 1/T_1^{\rm ESR} obtained from the ESR linewidth exhibits a Korringa-like linear increase with temperature above T_C evidencing a normal Fermi-liquid behavior. Below 45 K deviations from the Korringa-law occur which are ascribed to enhanced magnetic fluctuations within the FeAs layers upon approaching the superconducting transition. Below T_C the spin-lattice relaxation rate 1/T_1^{\rm ESR} follows a T^{1.5}-behavior without the appearance of a coherence peak.Comment: 5 pages, 5 figure

    Electron spin resonance in Eu based Fe pnictides

    Full text link
    The phase diagrams of EuFe2x_{2-x}Cox_xAs2_2 (0x0.4)(0 \leq x \leq 0.4) and EuFe2_2As2y_{2-y}Py_y (0y0.43)(0 \leq y \leq 0.43) are investigated by Eu2+^{2+} electron spin resonance (ESR) in single crystals. From the temperature dependence of the linewidth ΔH(T)\Delta H(T) of the exchange narrowed ESR line the spin-density wave (SDW) (T<TSDW)(T < T_{\rm SDW}) and the normal metallic regime (T>TSDW)(T > T_{\rm SDW}) are clearly distinguished. At T>TSDWT > T_{\rm SDW} the isotropic linear increase of the linewidth is driven by the Korringa relaxation which measures the conduction-electron density of states at the Fermi level. For T<TSDWT < T_{\rm SDW} the anisotropy probes the local ligand field, while the coupling to the conduction electrons disappears. With increasing substitution xx or yy the transition temperature TSDWT_{\rm SDW} decreases linearly accompanied by a linear decrease of the Korringa-relaxation rate from 8 Oe/K at x=y=0x=y=0 down to 3 Oe/K at the onset of superconductivity at x0.2x \approx 0.2 or at y0.3y \approx 0.3, above which it remains nearly constant. Comparative ESR measurements on single crystals of the Eu diluted SDW compound Eu0.2_{0.2}Sr0.8_{0.8}Fe2_2As2_2 and superconducting (SC) Eu0.22_{0.22}Sr0.78_{0.78}Fe1.72_{1.72}Co0.28_{0.28}As2_2 corroborate the leading influence of the ligand field on the Eu2+^{2+} spin relaxation in the SDW regime as well as the Korringa relaxation in the normal metallic regime. Like in Eu0.5_{0.5}K0.5_{0.5}Fe2_2As2_2 a coherence peak is not detected in the latter compound at Tc=21T_{\rm c}=21 K, which is in agreement with the expected complex anisotropic SC gap structure

    Phase separation in paramagnetic Eu0.6La0.4-xSr xMnO3

    Get PDF
    We investigate the magnetic properties of the system Eu 0.6La0.4-xSrxMnO3 with 0.1≤x≤0.3 by means of magnetic susceptibility and electron spin resonance measurements. Ferromagnetic resonance signals are observed in the paramagnetic regime from above the magnetic ordering temperature TN up to approximately room temperature. This regime is characterized by the coexistence of ferromagnetic entities within the globally paramagnetic phase. The results are compared to the Griffiths scenario reported in La1-xSr xMnO3. © 2011 American Physical Society

    Redox-Dependent Stability, Protonation, and Reactivity of Cysteine-Bound Heme Proteins

    Get PDF
    Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys binding studies with the minimalist heme peptide microperoxidase-8, demonstrate that the protein scaffold and solvent interactions play important roles in stabilizing a particular Cys–heme coordination. The increased stability of ferric thiolate compared with ferrous thiol arises mainly from entropic factors. This robust cyt c model system provides access to all four forms of Cys-bound heme, including the ferric thiol. Protein motions control the rates of heme redox reactions, and these effects are amplified at low pH, where the proteins are less stable. Thermodynamic signatures and redox reactivity of the model Cys-bound hemes highlight the critical role of the protein scaffold and its dynamics in modulating redox-linked transitions between thiols and thiolates

    Continental-scale geographic change across zealandia during paleogene subduction initiation

    Get PDF
    Data from International Ocean Discovery Program (IODP) Expedition 371 reveal vertical movements of 1-3 km in northern Zealandia during early Cenozoic subduction initiation in the western Pacific Ocean. Lord Howe Rise rose from deep (~1 km) water to sea level and subsided back, with peak uplift at 50 Ma in the north and between 41 and 32 Ma in the south. The New Caledonia Trough subsided 2-3 km between 55 and 45 Ma. We suggest these elevation changes resulted from crust delamination and mantle flow that led to slab formation. We propose a "subduction resurrection" model in which (1) a subduction rupture event activated lithospheric-scale faults across a broad region during less than ~5 m.y., and (2) tectonic forces evolved over a further 4-8 m.y. as subducted slabs grew in size and drove plate-motion change. Such a subduction rupture event may have involved nucleation and lateral propagation of slip-weakening rupture along an interconnected set of preexisting weaknesses adjacent to density anomalies

    Prolonged Graft Survival in Older Recipient Mice Is Determined by Impaired Effector T-Cell but Intact Regulatory T-Cell Responses

    Get PDF
    Elderly organ transplant recipients represent a fast growing segment of patients on the waiting list. We examined age-dependent CD4+ T-cell functions in a wild-type (WT) and a transgenic mouse transplant model and analyzed the suppressive function of old regulatory T-cells. We found that splenocytes of naïve old B6 mice contained significantly higher frequencies of T-cells with an effector/memory phenotype (CD4+CD44highCD62Llow). However, in-vitro proliferation (MLR) and IFNγ-production (ELISPOT) were markedly reduced with increasing age. Likewise, skin graft rejection was significantly delayed in older recipients and fewer graft infiltrating CD4+T-cells were observed. Old CD4+ T-cells demonstrated a significant impaired responsiveness as indicated by diminished proliferation and activation. In contrast, old alloantigen-specific CD4+CD25+FoxP3+ T-cells demonstrated a dose-dependent well-preserved suppressor function. Next, we examined characteristics of 18-month old alloreactive T-cells in a transgenic adoptive transfer model. Adoptively transferred old T-cells proliferated significantly less in response to antigen. Skin graft rejection was significantly delayed in older recipients, and graft infiltrating cells were reduced. In summary, advanced recipient age was associated with delayed acute rejection and impaired CD4+ T-cell function and proliferation while CD4+CD25+FoxP3+ T-cells (Tregs) showed a well-preserved function

    Elevated Flt3L predicts long-term survival in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms

    Get PDF
    BACKGROUND: The clinical management of high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) is challenging due to disease heterogeneity, illustrating the need for reliable biomarkers facilitating patient stratification and guiding treatment decisions. FMS-like tyrosine kinase 3 ligand (Flt3L) is emerging as a prognostic or predictive surrogate marker of host tumoral immune response and might enable the stratification of patients with otherwise comparable tumor features. METHODS: We evaluated Flt3L gene expression in tumor tissue as well as circulating Flt3L levels as potential biomarkers in a cohort of 54 patients with GEP-NEN. RESULTS: We detected a prominent induction of Flt3L gene expression in individual G2 and G3 NEN, but not in G1 neuroendocrine tumors (NET). Flt3L mRNA expression levels in tumor tissue predicted the disease-related survival of patients with highly proliferative G2 and G3 NEN more accurately than the conventional criteria of grading or NEC/NET differentiation. High level Flt3L mRNA expression was associated with the increased expression of genes related to immunogenic cell death, lymphocyte effector function and dendritic cell maturation, suggesting a less tolerogenic (more proinflammatory) phenotype of tumors with Flt3L induction. Importantly, circulating levels of Flt3L were also elevated in high grade NEN and correlated with patients' progression-free and disease-related survival, thereby reflecting the results observed in tumor tissue. CONCLUSIONS: We propose Flt3L as a prognostic biomarker for high grade GEP-NEN, harnessing its potential as a marker of an inflammatory tumor microenvironment. Flt3L measurements in serum, which can be easily be incorporated into clinical routine, should be further evaluated to guide patient stratification and treatment decisions
    corecore