331,501 research outputs found

    Detecting and diagnosing faults in dynamic stochastic distributions using a rational b-splines approximation to output PDFs

    Get PDF
    Describes the process of detecting and diagnosing faults in dynamic stochastic distributions using a rational b-splines approximation to output PDFs

    Optical spectroscopy study of Nd(O,F)BiS2 single crystals

    Full text link
    We present an optical spectroscopy study on F-substituted NdOBiS2_2 superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7%\% of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5.Comment: 5 pages, 5 figure

    Macroporous materials: microfluidic fabrication, functionalization and applications

    Get PDF
    This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields

    The mean velocity of two-state models of molecular motor

    Full text link
    The motion of molecular motor is essential to the biophysical functioning of living cells. In principle, this motion can be regraded as a multiple chemical states process. In which, the molecular motor can jump between different chemical states, and in each chemical state, the motor moves forward or backward in a corresponding potential. So, mathematically, the motion of molecular motor can be described by several coupled one-dimensional hopping models or by several coupled Fokker-Planck equations. To know the basic properties of molecular motor, in this paper, we will give detailed analysis about the simplest cases: in which there are only two chemical states. Actually, many of the existing models, such as the flashing ratchet model, can be regarded as a two-state model. From the explicit expression of the mean velocity, we find that the mean velocity of molecular motor might be nonzero even if the potential in each state is periodic, which means that there is no energy input to the molecular motor in each of the two states. At the same time, the mean velocity might be zero even if there is energy input to the molecular motor. Generally, the velocity of molecular motor depends not only on the potentials (or corresponding forward and backward transition rates) in the two states, but also on the transition rates between the two chemical states

    Room-Temperature Ferrimagnet with Frustrated Antiferroelectricity: Promising Candidate Toward Multiple State Memory

    Full text link
    On the basis of first-principles calculations we show that the M-type hexaferrite BaFe12O19 exhibits frustrated antiferroelectricity associated with its trigonal bipyramidal Fe3+ sites. The ferroelectric (FE) state of BaFe12O19, reachable by applying an external electric field to the antiferroelectric (AFE) state, can be made stable at room temperature by appropriate element substitution or strain engineering. Thus M-type hexaferrite, as a new type of multiferoic with coexistence of antiferroelectricity and ferrimagnetism, provide a basis for studying the phenomenon of frustrated antiferroelectricity and realizing multiple state memory devices.Comment: supporting material available via email. arXiv admin note: text overlap with arXiv:1210.7116 by other author

    Optical properties of TlNi2Se2: Observation of pseudogap formation

    Full text link
    The quasi-two-dimensional nickel chalcogenides TlNi2Se2TlNi_2Se_2 is a newly discovered superconductor. We have performed optical spectroscopy study on TlNi2Se2TlNi_2Se_2 single crystals over a broad frequency range at various temperatures. The overall optical reflectance spectra are similar to those observed in its isostructure BaNi2As2BaNi_2As_2. Both the suppression in R(ω)R(\omega) and the peaklike feature in σ1(ω)\sigma_1(\omega) suggest the progressive formation of a pseudogap feature in the midinfrared range with decreasing temperatures, which might be originated from the dynamic local fluctuation of charge-density-wave (CDW) instability. We propose that the CDW instability in TlNi2Se2TlNi_2Se_2 is driven by the saddle points mechanism, due to the existence of van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure
    • …
    corecore