5,621 research outputs found

    Reconciling aerosol light extinction measurements from spaceborne lidar observations and in situ measurements in the Arctic

    Get PDF
    © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.In this study we investigate to what degree it is possible to reconcile continuously recorded particle light extinction coefficients derived from dry in situ measurements at Zeppelin station (78.92° N, 11.85° E; 475 m above sea level), Ny-Ålesund, Svalbard, that are recalculated to ambient relative humidity, as well as simultaneous ambient observations with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. To our knowledge, this represents the first study that compares spaceborne lidar measurements to optical aerosol properties from short-term in situ observations (averaged over 5 h) on a case-by-case basis. Finding suitable comparison cases requires an elaborate screening and matching of the CALIOP data with respect to the location of Zeppelin station as well as the selection of temporal and spatial averaging intervals for both the ground-based and spaceborne observations. Reliable reconciliation of these data cannot be achieved with the closest-approach method, which is often used in matching CALIOP observations to those taken at ground sites. This is due to the transport pathways of the air parcels that were sampled. The use of trajectories allowed us to establish a connection between spaceborne and ground-based observations for 57 individual overpasses out of a total of 2018 that occurred in our region of interest around Svalbard (0 to 25° E, 75 to 82° N) in the considered year of 2008. Matches could only be established during winter and spring, since the low aerosol load during summer in connection with the strong solar background and the high occurrence rate of clouds strongly influences the performance and reliability of CALIOP observations. Extinction coefficients in the range of 2 to 130 Mmg-1 at 532 nm were found for successful matches with a difference of a factor of 1.47 (median value for a range from 0.26 to 11.2) between the findings of in situ and spaceborne observations (the latter being generally larger than the former). The remaining difference is likely to be due to the natural variability in aerosol concentration and ambient relative humidity, an insufficient representation of aerosol particle growth, or a misclassification of aerosol type (i.e., choice of lidar ratio) in the CALIPSO retrieval.Peer reviewe

    An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten

    No full text
    International audienceAerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E). Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions) represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area) in environments similar to the one studied

    Reasoning with comparative moral judgements: an argument for Moral Bayesianism

    Get PDF
    The paper discusses the notion of reasoning with comparative moral judgements (i.e judgements of the form “act a is morally superior to act b”) from the point of view of several meta-ethical positions. Using a simple formal result, it is argued that only a version of moral cognitivism that is committed to the claim that moral beliefs come in degrees can give a normatively plausible account of such reasoning. Some implications of accepting such a version of moral cognitivism are discussed

    A Simple Derivation of the Hard Thermal Loop Effective Action

    Get PDF
    We use the background field method along with a special gauge condition, to derive the hard thermal loop effective action in a simple manner. The new point in the paper is to relate the effective action explicitly to the S-matrix from the onset.Comment: 11 pages, Latex; lost text after sect. 2 reinserte

    Solitons and Quasielectrons in the Quantum Hall Matrix Model

    Full text link
    We show how to incorporate fractionally charged quasielectrons in the finite quantum Hall matrix model.The quasielectrons emerge as combinations of BPS solitons and quasiholes in a finite matrix version of the noncommutative ϕ4\phi^4 theory coupled to a noncommutative Chern-Simons gauge field. We also discuss how to properly define the charge density in the classical matrix model, and calculate density profiles for droplets, quasiholes and quasielectrons.Comment: 15 pages, 9 figure

    Edge Theories for Polarized Quantum Hall States

    Full text link
    Starting from recently proposed bosonic mean field theories for fully and partially polarized quantum Hall states, we construct corresponding effective low energy theories for the edge modes. The requirements of gauge symmetry and invariance under global O(3) spin rotations, broken only by a Zeeman coupling, imply boundary conditions that allow for edge spin waves. In the generic case, these modes are chiral, and the spin stiffness differs from that in the bulk. For the case of a fully polarized ν=1\nu=1 state, our results agree with previous Hartree-Fock calculations.Comment: 15 pages (number of pages has been reduced by typesetting in RevTeX); 2 references adde

    Two-vibron bound states in alpha-helix proteins : the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling

    Full text link
    The influence of the intramolecular anharmonicity and the strong vibron-phonon coupling on the two-vibron dynamics in an α\alpha-helix protein is studied within a modified Davydov model. The intramolecular anharmonicity of each amide-I vibration is considered and the vibron dynamics is described according to the small polaron approach. A unitary transformation is performed to remove the intramolecular anharmonicity and a modified Lang-Firsov transformation is applied to renormalize the vibron-phonon interaction. Then, a mean field procedure is realized to obtain the dressed anharmonic vibron Hamiltonian. It is shown that the anharmonicity modifies the vibron-phonon interaction which results in an enhancement of the dressing effect. In addition, both the anharmonicity and the dressing favor the occurrence of two different bound states which the properties strongly depend on the interplay between the anharmonicity and the dressing. Such a dependence was summarized in a phase diagram which characterizes the number and the nature of the bound states as a function of the relevant parameters of the problem. For a significant anharmonicity, the low frequency bound states describe two vibrons trapped onto the same amide-I vibration whereas the high frequency bound states refer to the trapping of the two vibrons onto nearest neighbor amide-I vibrations.Comment: may 2003 submitted to Phys. Rev.

    Composite fermion wave functions as conformal field theory correlators

    Full text link
    It is known that a subset of fractional quantum Hall wave functions has been expressed as conformal field theory (CFT) correlators, notably the Laughlin wave function at filling factor ν=1/m\nu=1/m (mm odd) and its quasiholes, and the Pfaffian wave function at ν=1/2\nu=1/2 and its quasiholes. We develop a general scheme for constructing composite-fermion (CF) wave functions from conformal field theory. Quasiparticles at ν=1/m\nu=1/m are created by inserting anyonic vertex operators, P1m(z)P_{\frac{1}{m}}(z), that replace a subset of the electron operators in the correlator. The one-quasiparticle wave function is identical to the corresponding CF wave function, and the two-quasiparticle wave function has correct fractional charge and statistics and is numerically almost identical to the corresponding CF wave function. We further show how to exactly represent the CF wavefunctions in the Jain series ν=s/(2sp+1)\nu = s/(2sp+1) as the CFT correlators of a new type of fermionic vertex operators, Vp,n(z)V_{p,n}(z), constructed from nn free compactified bosons; these operators provide the CFT representation of composite fermions carrying 2p2p flux quanta in the nthn^{\rm th} CF Landau level. We also construct the corresponding quasiparticle- and quasihole operators and argue that they have the expected fractional charge and statistics. For filling fractions 2/5 and 3/7 we show that the chiral CFTs that describe the bulk wave functions are identical to those given by Wen's general classification of quantum Hall states in terms of KK-matrices and ll- and tt-vectors, and we propose that to be generally true. Our results suggest a general procedure for constructing quasiparticle wave functions for other fractional Hall states, as well as for constructing ground states at filling fractions not contained in the principal Jain series.Comment: 26 pages, 3 figure

    Quantum Hall quasielectron operators in conformal field theory

    Full text link
    In the conformal field theory (CFT) approach to the quantum Hall effect, the multi-electron wave functions are expressed as correlation functions in certain rational CFTs. While this approach has led to a well-understood description of the fractionally charged quasihole excitations, the quasielectrons have turned out to be much harder to handle. In particular, forming quasielectron states requires non-local operators, in sharp contrast to quasiholes that can be created by local chiral vertex operators. In both cases, the operators are strongly constrained by general requirements of symmetry, braiding and fusion. Here we construct a quasielectron operator satisfying these demands and show that it reproduces known good quasiparticle wave functions, as well as predicts new ones. In particular we propose explicit wave functions for quasielectron excitations of the Moore-Read Pfaffian state. Further, this operator allows us to explicitly express the composite fermion wave functions in the positive Jain series in hierarchical form, thus settling a longtime controversy. We also critically discuss the status of the fractional statistics of quasiparticles in the Abelian hierarchical quantum Hall states, and argue that our construction of localized quasielectron states sheds new light on their statistics. At the technical level we introduce a generalized normal ordering, that allows us to "fuse" an electron operator with the inverse of an hole operator, and also an alternative approach to the background charge needed to neutralize CFT correlators. As a result we get a fully holomorphic CFT representation of a large set of quantum Hall wave functions.Comment: minor changes, publishe

    A pseudo-Lagrangian model study of the size distribution properties over Scandinavia: transport from Aspvreten to Värriö

    No full text
    International audienceThe evolution of the aerosol size distribution during transport between Aspvreten (58.8° N, 17.4° E) and Värriö (67.46° N, 29.35° E) was studied using a pseudo-Lagrangian approach. Aerosol dynamic processes were studied and interpreted utilizing a state-of-the-art aerosol dynamic box model UHMA (University of Helsinki Multicomponent Aerosol model) complemented with OH, NO3, O3 and terpene chemistry. In the model simulations, the growth and formation of aerosol particles was controlled by sulphuric acid, ammonia, water and an unidentified low volatile organic compound. This organic compound was assumed to be a product of terpene oxidation with a yield of 13% in the base case conditions. Changes of aerosol size distribution properties during transport between the stations were examined in twelve clear sky cases. On average, the modelled number agreed fairly well with observations. Mass concentration was overestimated by 10%. Apart from dilution, the only removal mechanism for aerosol mass is dry deposition. A series of sensitivity tests performed revealed that the absolute magnitude of dry deposition effects on the aerosol size distribution is slow overall. Furthermore, nucleation does not leave a significant contribution to aerosol number in the selected cases. The sensitivity of the modelled size distribution to concentration of precursor gases and oxidants is, however, obvious. In order to explain observed mass increase during transport we conclude that a yield of low volatile products from oxidation of terpenes of 10?15% is required to explain observed growth rates. Coagulation is acknowledged to be highly important in modelled cases
    corecore