5,866 research outputs found

    Bounds on transverse momentum dependent distribution and fragmentation functions

    Get PDF
    We give bounds on the distribution and fragmentation functions that appear at leading order in deep inelastic 1-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow from positivity of the defining matrix elements and are an important guidance in estimating the magnitude of the azimuthal and spin asymmetries in these processes.Comment: 5 pages, Revtex, 3 Postscript figures, version with minor changes, to be published in Physical Review Letter

    Towards a single step process to create high purity gold structures by electron beam induced deposition at room temperature

    Get PDF
    Highly pure metallic structures can be deposited by electron beam induced deposition and they have many important applications in different fields. The organo-metallic precursor is decomposed and deposited under the electron beam, and typically it is purified with post-irradiation in presence of O2. However, this approach limits the purification to the surface of the deposit. Therefore, 'in situ' purification during deposition using simultaneous flows of both O2 and precursor in parallel with two gas injector needles has been tested and verified. To simplify the practical arrangements, a special concentric nozzle has been designed allowing deposition and purification performed together in a single step. With this new device metallic structures with high purity can be obtained more easily, while there is no limit on the height of the structures within a practical time frame. In this work, we summarize the first results obtained for 'in situ' Au purification using this concentric nozzle, which is described in more detail, including flow simulations. The operational parameter space is explored in order to optimize the shape as well as the purity of the deposits, which are evaluated through scanning electron microscope and energy dispersive x-ray spectroscopy measurements, respectively. The observed variations are interpreted in relation to other variables, such as the deposition yield. The resistivity of purified lines is also measured, and the influence of additional post treatments as a last purification step is studied.EMPA is acknowledged for providing the original code for the GIS simulator model, which was extended by Stan de Muijnck (TU Delft) with the new geometry. Pleun Dona (FEI) is acknowledged for helping in the design of the concentric nozzle and in getting a working prototype. Patricia Peinado is also acknowledged for help on experimental activities. This work was supported by NanoNextNL program, a Dutch national research and technology program for micro- and nano-technology

    On the Hidden Order in URu2_{2}Si2_{2} --- Antiferro Hexadecapole Order and its Consequences

    Full text link
    An antiferro ordering of an electric hexadecapole moment is discussed as a promising candidate for the long standing mystery of the hidden order phase in URu2_{2}Si2_{2}. Based on localized ff-electron picture, we discuss the rationale of the selected multipole and the consequences of the antiferro hexadecapole order of xy(x2−y2)xy(x^{2}-y^{2}) symmetry. The mean-field solutions and the collective excitations from them explain reasonably significant experimental observations: the strong anisotropy in the magnetic susceptibility, characteristic behavior of pressure versus magnetic field or temperature phase diagrams, disappearance of inelastic neutron-scattering intensity out of the hidden order phase, and insensitiveness of the NQR frequency at Ru-sites upon ordering. A consistency with the strong anisotropy in the magnetic responses excludes all the multipoles in two-dimensional representations, such as (Oyz,Ozx)(O_{yz},O_{zx}). The expected azimuthal angle dependences of the resonant X-ray scattering amplitude are given. The (x2−y2)(x^{2}-y^{2})-type antiferro quadrupole should be induced by an in-plane magnetic field along [110][110], which is reflected in the thermal expansion and the elastic constant of the transverse (c11−c12)/2(c_{11}-c_{12})/2 mode. The (x2−y2)(x^{2}-y^{2})-type [(xy)(xy)-type] antiferro quadrupole is also induced by applying the uniaxial stress along [110][110] direction [[100][100] direction]. A detection of these induced antiferro quadrupoles under the in-plane magnetic field or the uniaxial stress using the resonant X-ray scattering provides a direct redundant test for the proposed order parameter.Comment: 10 pages, 10 figures, 5 table

    Measurement of the CMS Magnetic Field

    Full text link
    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. The results of the measurements made at 4 T are reported and compared with a three-dimensional model of the CMS magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference

    Dynamics of liquid 4He in Vycor

    Full text link
    We have measured the dynamic structure factor of liquid 4He in Vycor using neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r energies and lifetimes at low temperature (T = 0.5 K) and their temperature dependence are the same as in bulk liquid 4He. However, the weight of the single p-r component does not scale with the superfluid fraction (SF) as it does in the bulk. In particular, we observe a p-r excitation between T_c = 1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if the p-r excitation intensity scales with the Bose condensate, that there is a separation of the Bose-Einstein condensation temperature and the superfluid transition temperature T_c of 4He in Vycor. We also observe a two-dimensional layer mode near the roton wave vector. Its dispersion is consistent with specific heat and SF measurements and with layer modes observed on graphite surfaces.Comment: 3 pages, 4 figure

    Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth

    Full text link
    We have prepared iron microwires in a combination of focused electron beam induced deposition (FEBID) and autocatalytic growth from the iron pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical transport properties of the microwires were investigated and it was found that the temperature dependence of the longitudinal resistivity (rhoxx) shows a typical metallic behaviour with a room temperature value of about 88 micro{\Omega} cm. In order to investigate the magnetotransport properties we have measured the isothermal Hall-resistivities in the range between 4.2 K and 260 K. From these measurements positive values for the ordinary and the anomalous Hall coefficients were derived. The relation between anomalous Hall resistivity (rhoAN) and longitudinal resistivity is quadratic, rhoAN rho^2 xx, revealing an intrinsic origin of the anomalous Hall effect. Finally, at low temperature in the transversal geometry a negative magnetoresistance of about 0.2 % was measured

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure
    • 

    corecore