26 research outputs found
Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin.
Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal a hierarchical organization of the PCH domains into distinct territories. Strikingly, H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D interactions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our findings have important implications for how PCH architecture influences the function and evolution of both repetitive heterochromatin and the gene-rich euchromatin
Stressful situation if CENP-A not front and CENter
The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation
Root-uptake of
Sand culture using radish (Raphanus sativus L.) and hydroponics using carrot (Daucus carota L.) were conducted to examine root-uptake of carbon and its assimilation in the form of 14C-acetic acid. 14C-acetic acid (1, 2-14C, radioactivity: 74 kBq) was added to each pot. Radishes were grown under the dark conditions or the light conditions for 24 h. Carrot were grown under the light conditions after 14C-acetic acid addition (radioactivity: 19 kBq). The 14C radioactivity in each plant part was determined. The distribution of 14C in the plants was visualized using autoradiography. For a comparison, autoradiography was also done using 22Na. The results indicated that the root vegetables absorbed 14C through the roots and assimilated it into the shoots and edible parts. However, the amount of 14C-acetic acid absorbed by plants through the roots was considered to be very small. Absorption and assimilation of 14C seemed to be carried out not because of uptake of 14C-acetic acid but because of uptake of 14C in inorganic forms with very low concentration. 14C dominantly transferred to the plant parts where were physiologically active. 14C movement in the plant did not have a close relation to water movement unlike 22Na movement
Recommended from our members
Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin.
Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal a hierarchical organization of the PCH domains into distinct "territories." Strikingly, H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D interactions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our findings have important implications for how PCH architecture influences the function and evolution of both repetitive heterochromatin and the gene-rich euchromatin