16 research outputs found
A single pretreatment by zoledronic acid converts metastases from osteolytic to osteoblastic in the rat
Bone metastases are severe complications of cancers associated with increased morbidity, pain, risk fracture, and reduced life span for patients. Bisphosphonates emerged as a relief treatment in bone metastases. A single dose of zoledronic acid (78 μg/kg) was injected into six Copenhagen rats 4 days before receiving an intraosseous inoculation of metastatic anaplastic tumor of lymph node and lung cell (MLL) prostate cancer cells. Rat femurs were analyzed for changes by microCT and histomorphometry; trabecular volume, trabecular characteristics, osteoid parameters, osteoblastic surfaces, and osteoclast number were measured. Values were compared to a group of SHAM animals, a group of SHAM animals having received zoledronic acid and animals inoculated with MLL cells. All rats were euthanized after 1 month. MLL cells induced osteolysis in the metaphysis with extension of the tumor to soft tissues through cortical perforations. Zoledronic acid induced a marked osteosclerosis in the primary spongiosa in both SHAM and rats inoculated with MLL. Osteosclerosis was obtained in the secondary spongiosa of MLL rats. The bisphosphonate preserved cortical integrity in all animals, and no extension to soft tissues was observed in most animals. The number of osteoclasts was elevated, indicating that there was no apoptosis of osteoclasts but they became inactive. Osteosclerosis was associated with increased osteoblastic surfaces. A single zoledronic acid injection turned osteolytic metastases into osteosclerotic and preserved cortical integrity
A non-steroidal anti-inflammatory drug (ketoprofen) does not delay β-TCP bone graft healing
β-Tricalcium phosphate (β-TCP) is a suitable biomaterial in oral and maxillofacial surgery since it can induce a rapid proliferation of woven bone. Granules, prepared by the polyurethane foam method, were implanted in critical size defects performed in the femoral condyles of New Zealand rabbits. Animals were studied after 8 and 28 days. Ketoprofen (a non-steroidal anti-inflammatory drug (NSAID)) was given for 8 and 28 days to evaluate its effects on the healing of the graft. Before euthanasia, the rabbits received an intravenous injection of fluorescent microbeads. Bones were analyzed by microcomputed tomography. β-TCP granules induced metaplastic bone trabeculae as early as 8 days post-surgery. At 28 days, the amount of bone was increased and the biomaterial volume decreased due to simultaneous macrophagic resorption. The amount of macrophages labeled with microbeads was less in the grafted area than in the vicinal intact marrow spaces. Ketoprofen had no effect on the amount of bone formed and on the number of labeled macrophages. The influence of small doses of NSAID, given in a short duration period, did not present deleterious effects on bone graft healing
Pharmacologic inhibitors of IκB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo
The NF-κB signaling pathway is known to play an important role in the regulation of osteoclastic bone resorption and cancer cell growth. Previous studies have shown that genetic inactivation of IκB kinase (IKK), a key component of NF-κB signaling, inhibits osteoclastogenesis, but the effects of pharmacologic IKK inhibitors on osteolytic bone metastasis are unknown. Here, we studied the effects of the IKK inhibitors celastrol, BMS-345541, parthenolide, and wedelolactone on the proliferation and migration of W256 cells in vitro and osteolytic bone destruction in vivo. All compounds tested inhibited the growth and induced apoptosis of W256 cells as evidenced by caspase-3 activation and nuclear morphology. Celastrol, BMS-345541, and parthenolide abolished IL1β and tumor necrosis factor α–induced IκB phosphorylation and prevented nuclear translocation of NF-κB and DNA binding. Celastrol and parthenolide but not BMS-345541 prevented the activation of both IKKα and IKKβ, and celastrol inhibited IKKα/β activation by preventing the phosphorylation of TAK1, a key receptor–associated factor upstream of IKK. Celastrol and parthenolide markedly reduced the mRNA expression of matrix metalloproteinase 9 and urinary plasminogen activator, and inhibited W256 migration. Administration of celastrol or parthenolide at a dose of 1 mg/kg/day suppressed trabecular bone loss and reduced the number and size of osteolytic bone lesions following W256 injection in rats. Histomorphometric analysis showed that both compounds decreased osteoclast number and inhibited bone resorption. In conclusion, pharmacologic inhibitors of IKK are effective in preventing osteolytic bone metastasis in this model and might represent a promising class of agents to the prevention and treatment of metastatic bone disease associated with breast cancer
Texture analysis of computed tomographic images in osteoporotic patients with sinus lift bone graft reconstruction
International audienceObjective: Bone implants are now widely used to replace missing teeth. Bone grafting (sinus lift) is a very useful way to increase the bone volume of the maxilla in patients with bone atrophy. There is a 6-9 mo. delay for the receiver grafted site to heal before the implants can be placed. Computed tomography is a useful method to measure the amount of remaining bone before implantation and to evaluate the quality of the receiver bone at the end of the healing period. Texture analysis is a non-invasive method useful to characterize bone microarchitecture on X-ray images. Patients and methods: Ten patients in which a sinus lift surgery was necessary before implantation were analyzed in the present study. All had a bone reconstruction with a combination of a biomaterial (β-TCP) and autograft bone harvested at the chin. Computed tomographic images were obtained before grafting (t0), at mid-interval (t1: 4.2 ± 0.7 mo.) and before implant placement (t2: 9.2 ± 0.6 mo.). Texture analysis was done with the run-length method. Results: A significant increase of texture parameters at t1 reflected a gain of homogeneity due to the graft and the beginning of bone remodeling. At t2, some parameters remained high and corresponded to the persistence of bone trabeculae while the resorption of biomaterials was identified by other parameters which tended to return to pre-graft values. Conclusion: Texture analysis identified changes during the healing of the receiver site. Clinical relevance: The method is known to correlate with microarchitectural changes in bone and could be a useful approach to characterized osseointegrated grafts