84 research outputs found

    Assessment of corrosion in retrieved spine implants

    Get PDF
    Recently the use of dissimilar metals in spine instrumentation has increased, especially in the case of adult deformities, where rods made from Cobalt Chrome alloys (CoCr) are used with Titanium (Ti) screws. The use of dissimilar metals increases the risk of galvanic corrosion and patients have required revision spine surgery due to severe metallosis that may have been caused by corrosion. We aimed to assess the presence of corrosion in spine implant retrievals from constructs with two types of material combinations: similar (Ti/Ti) and dissimilar (CoCr/Ti). First, we devised a grading score for corrosion of the rod-fixture junctions. Then, we applied this score to a collection of retrieved spine implants. Our proposed corrosion grading score was proven reliable (kappa > 0.7). We found no significant difference in the scores between 4 CoCr and 11 Ti rods (p = 0.0642). There was no indication that time of implantation had an effect on the corrosion score (p = 0.9361). We recommend surgeons avoid using implants designs with dissimilar metals to reduce the risk of corrosion whilst a larger scale study of retrieved spine implants is conducted. Future studies can now use our scoring system for spine implant corrosion

    Management of the ataxias : towards best clinical practice

    Get PDF
    This document aims to provide recommendations for healthcare professionals on the diagnosis and management of people with progressive ataxia. The progressive ataxias are rare neurological conditions, and are often poorly understood by healthcare professionals. Diagnosis has generally been a long process because of the rarity and complexity of the different ataxias1. In addition, many healthcare professionals are unsure how best to manage the conditions and there is sometimes a feeling that little can be done for these patients1,2 Although there are no disease-modifying treatments for the majority of the progressive ataxias, there are many aspects of the conditions that are treatable and it is thus important that this is recognised by the relevant healthcare professionals. The diagnosis and management of the few treatable causes is also of paramount importance. All this highlights the importance of producing these guidelines: in order to increase awareness and understanding of these conditions, and lead to their improved diagnosis and management. With new developments in genetic technologies and the discovery of more genes, diagnosis is improving and has great scope to continue to do so. In addition, research is advancing and many human trials to test medications are taking place, making us more optimistic that disease-modifying treatments will be found for the progressive ataxias

    The vertebral body growth plate in scoliosis: a primary disturbance of growth?

    Get PDF
    Study Design and Aims: This was an observational pilot study of the vertebral body growth plates in scoliosis involving high-resolution coronal plane magnetic resonance (MR) imaging and histological examination. One aim of this study was to determine whether vertebral body growth plates in scoliosis demonstrated abnormalities on MR imaging. A second aim was to determine if a relationship existed between MR and histological abnormalities in these vertebral body growth plates. Methods: MR imaging sequences of 18 patients demonstrated the vertebralbody growth plates well enough to detect gross abnormalities/ deficient areas/zones. Histological examination of ten vertebral body growth plates removed during routine scoliosis surgery was performed. Observational histological comparison with MR images was possible in four cases. Results: Four of the 18 MR images demonstrated spines with normal curvature and normal vertebral body growth plates. In 13 scoliotic spines, convex and concave side growth plate deficiencies were observed most frequently at or near the apex of the curve. One MR image demonstrated a 55° kyphosis and no convex or concave side deficiencies. The degree of vertebral body wedging was independent of the presence of vertebral body growth plate deficiency. Histological abnormalities of the vertebral body growth plates were demonstrated in four with MR imaging abnormalities. Conclusion: This study demonstrated MR image abnormalities of scoliotic vertebral body growth plates compared to controls. A qualitative relationship was demonstrated between MR imaging and histological abnormalities. The finding that vertebral body growth plate deficiencies occurred both on the convex and concave sides of the spine, closest to the apical vertebra of the scoliosis curve, implied that they are less likely to be the result of adaptive changes to the physical forces involved in the scoliotic deformity. One explanation is that they represent a primary disturbance of growth

    Evidence for an association of HLA-DRB1*15 and DRB1*09 with leprosy and the impact of DRB1*09 on disease onset in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigens (HLAs) have been proposed to modulate the immune response to <it>Mycobacterium leprae</it>. The association of HLA-DRB1 with leprosy has been reported in several populations, but not in a Chinese population.</p> <p>Methods</p> <p>The polymerase chain reaction-sequence-specific oligonucleotide probe with Luminex100 (PCR-SSOP-Luminex) method was used to genotype HLA-DRB1 alleles in 305 leprosy patients and 527 healthy control individuals.</p> <p>Results</p> <p>The HLA-DRB1*15 allele was significantly more prevalent among leprosy patients than healthy controls, whereas the frequency of the HLA-DRB1*09 allele was lower among leprosy patients, especially those with early-onset disease.</p> <p>Conclusion</p> <p>HLA-DRB1 alleles are associated with leprosy susceptibility in a Chinese population. The HLA-DRB1*09 allele was found to be protective exclusively in a subset of early-onset leprosy patients.</p

    Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis

    Get PDF
    Asymmetrical growth of the vertebrae has been implicated as one possible etiologic factor in the pathogenesis of adolescent idiopathic scoliosis. The longitudinal vertebral growth derives from the endochondral ossification of the vertebral growth plate. In the present study, the growth plates from the convex and concave side of the vertebrae were characterized by the method of histology and immunohistochemistry to evaluate the growth activity, cell proliferation, and apoptosis. Normal zoned architectures were observed in the convex side of the growth plate and disorganized architectures in the concave side. The histological grades were significantly different between the convex and the concave side of the growth plate in the apex vertebrae (P < 0.05). The histological difference was also found significant statistically between end vertebrae and apex vertebrae in the concave side of vertebral growth plates (P < 0.05). The proliferative potential indexes and apoptosis indexes of chondrocytes in the proliferative and hypertrophic zone in the convex side were significantly higher than that in the concave side in the apex vertebral growth plate (P < 0.05). There was a significant difference of the proliferative potential index (proliferating cell nuclear antigen, PCNA index) between convex side and concave side at the upper end vertebra (P < 0.05). The difference of the proliferative potential index and apoptosis index were found significant statistically in the concave side of the vertebral growth plate between end vertebrae and apex vertebrae (P < 0.05). The same result was also found for the apoptosis index (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate biotin nick end labeling assay, TUNEL index) in the convex side of vertebral growth plate between end vertebrae and apex vertebrae (P < 0.05). Some correlation were found between radiographic measurements and proliferation and apoptosis indexes. The difference in histological grades and cellular activity between the convex and concave side indicated that the bilateral growth plate of the vertebrae in AIS patients have different growth kinetics which may affect the curve progression

    Integrated Expression Profiling and Genome-Wide Analysis of ChREBP Targets Reveals the Dual Role for ChREBP in Glucose-Regulated Gene Expression

    Get PDF
    The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator

    A Dutch guideline for the treatment of scoliosis in neuromuscular disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with neuromuscular disorders with a progressive muscle weakness such as Duchenne Muscular Dystrophy and Spinal Muscular Atrophy frequently develop a progressive scoliosis. A severe scoliosis compromises respiratory function and makes sitting more difficult. Spinal surgery is considered the primary treatment option for correcting severe scoliosis in neuromuscular disorders. Surgery in this population requires a multidisciplinary approach, careful planning, dedicated surgical procedures, and specialized after care.</p> <p>Methods</p> <p>The guideline is based on scientific evidence and expert opinions. A multidisciplinary working group representing experts from all relevant specialties performed the research. A literature search was conducted to collect scientific evidence in answer to specific questions posed by the working group. Literature was classified according to the level of evidence.</p> <p>Results</p> <p>For most aspects of the treatment scientific evidence is scarce and only low level cohort studies were found. Nevertheless, a high degree of consensus was reached about the management of patients with scoliosis in neuromuscular disorders. This was translated into a set of recommendations, which are now officially accepted as a general guideline in the Netherlands.</p> <p>Conclusion</p> <p>In order to optimize the treatment for scoliosis in neuromuscular disorders a Dutch guideline has been composed. This evidence-based, multidisciplinary guideline addresses conservative treatment, the preoperative, perioperative, and postoperative care of scoliosis in neuromuscular disorders.</p
    corecore