217 research outputs found

    Optical characteristics of single wavelength-tunable InAs/InGaAsP/InP(100) quantum dots emitting at 1.55 um

    Get PDF
    We have studied the emission properties of individual InAs quantum dots (QDs) grown in an InGaAsP matrix on InP(100) by metal-organic vapor-phase epitaxy. Low-temperature microphotoluminescence spectroscopy shows emission from single QDs around 1550 nm with characteristic exciton-biexciton behavior, and a biexciton antibinding energy of more than 2 meV. Temperature-dependent measurements reveal negligible optical-phonon induced broadening of the exciton line up to 50 K, and emission from the exciton state clearly persists above 70 K. Furthermore, we find no measurable polarized fine structure splitting of the exciton state within the experimental precision. These results are encouraging for the development of a controllable photon source for fiber-based quantum information and cryptography systems.Comment: 3 pages, 4 figures, submitted AP

    XMAP215 is a Processive Microtubule Polymerase

    Get PDF
    Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1:1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of “tip-tracking.” These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip-tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.Molecular and Cellular Biolog

    All-optical switching due to state-filling in quantum dots

    Get PDF
    We report all-optical switching due to state-filling in quantum dots (QDs) within a Mach-Zehnder Interferometric (MZI) switch. The MZI was fabricated using InGaAsP/InP waveguides containing a single layer of InAs/InP QDs. A 1530-1570 nm probe beam is switched by optical excitation of one MZI-arm from the top. By exciting below the InGaAsP bandgap, we prove that the refractive index nonlinearity is only due to the QDs. The switching efficiency is 2 rad/(microW absorbed power). Probe wavelength insensitivity was obtained using a broad distribution of QDs.Comment: 12 page

    Tips for profitable small grain production

    Get PDF
    1 online resource (PDF, 4 pages)This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space

    Full text link
    Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of dam-aged biological molecules might serve to seed new life (necropanspermia).Comment: Accepted for publication in Space Science Review
    corecore