1,420 research outputs found
Water dispersible microbicidal cellulose acetate phthalate film
BACKGROUND: Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. METHODS: CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. RESULTS: The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. CONCLUSIONS: Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not have to be removed following application and use. In addition to their potential as topical microbicides, the films have promise for mucosal delivery of pharmaceuticals other than CAP
Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection
Review article: newer optical and digital chromoendoscopy techniques vs. dye-based chromoendoscopy for diagnosis and surveillance in inflammatory bowel disease
BackgroundRecent innovations in gastrointestinal endoscopy have changed our traditional approach to diagnosis and therapy in patients with inflammatory bowel diseases (IBD). While traditionally used dye-based chromoendoscopy (DBC) techniques suffer from several limitations that reduce their utility in daily routine practice, newer dye-less' chromoendoscopy (DLC) techniques offer a great potential to overcome most of these limitations.
AimTo review available optical and digital chromoendoscopy techniques, by critically discussing their potential for diagnostic and surveillance colonoscopy in patients with IBD.
MethodsA literature search on the use of dye-less and dye-based chromoendoscopy in IBD patients was performed.
ResultsIn long-standing IBD, DBC improves detection of dysplasia (diagnostic odds ratio=17.5, 95% CI=1.2-247.1) as well as prediction of inflammatory disease activity and extent of disease compared with standard video-colonoscopy. Narrow band imaging (NBI) shows no improvement in dysplasia detection rates compared with white-light endoscopy and DBC (P=0.6). Moreover, NBI results in a suboptimal differentiation of dysplastic from nondysplastic lesions. No data regarding digital DLC techniques (i.e. FICE, i-scan) for dysplasia detection in IBD are yet available. Both NBI and i-scan are superior to white-light endoscopy in assessing the activity and extent of colorectal IBD.
ConclusionsAlthough the potential benefits of newer optical and digital dye-less chromoendoscopy techniques over traditionally used DBC are substantial, only DBC can currently be recommended to improve dysplasia detection in long-standing IBD. In contrast, DLC has the potential to quantify disease activity and mucosal healing in IBD
Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles
BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection
From the surface to the single cell: Novel endoscopic approaches in inflammatory bowel disease
Inflammatory bowel diseases (IBD) comprise the two major entities Crohn's disease and ulcerative colitis and endoscopic imaging of the gastrointestinal tract has always been an integral and central part in the management of IBD patients. Within the recent years, mucosal healing emerged as a key treatment goal in IBD that substantially decides about the clinical outcome of IBD patients, thereby demanding for a precise, timely and detailed endoscopic assessment of the mucosal inflammation associated with IBD. Further, molecular imaging has tremendously expanded the clinical utility and applications of modern endoscopy, now encompassing not only diagnosis, surveillance, and treatment but also the prediction of individual therapy response. Within this review we describe novel endoscopic approaches and advanced endoscopic imaging methods for the diagnosis, treatment and surveillance of IBD patients. We begin by providing an overview over novel and advanced imaging techniques such as magnification endoscopy and dye-based and dye-less chromoendoscopy, endomicroscopy and endocytoscopy. We then describe how these techniques can be utilized for the precise and ultrastructural assessment of mucosal inflammation and dysplasia development associated with IBD and outline how they have enabled the endoscopist to gain insight onto the cellular level in real-time. Finally, we provide an outlook on how molecular imaging has rapidly evolved in the recent past and can be used to make individual predictions about the therapeutic response towards biological treatment
Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide
BACKGROUND: For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored
A Model for the Thermodynamics of Globular Proteins
Comments: 6 pages RevTeX, 6 Postscript figures. We review a statistical
mechanics treatment of the stability of globular proteins based on a simple
model Hamiltonian taking into account protein self interactions and
protein-water interactions. The model contains both hot and cold folding
transitions. In addition it predicts a critical point at a given temperature
and chemical potential of the surrounding water. The universality class of this
critical point is new
Expression in Escherichia coli of a cloned DNA sequence encoding the pre-S2 region of hepatitis B virus
A DNA sequence encoding the entire pre-S2 region (amino acids 120-174; serotype ayw) of human hepatitis B virus envelope protein has been inserted into the lacZ gene of the plasmid pSKS105 yielding a recombinant, pWS3. Lac+ colonies of the Escherichia coli M182 (lacIOPZYA), isolated after transformation with pWS3, produced a pre-S2 peptide-ß-galactosidase fusion protein. This fusion protein, which comprised as much as 3% of the total bacterial protein, was purified to >90% homogeneity by affinity chromatography on p-aminophenyl-ß-D-thiogalactoside-Sepharose. It is immunoprecipitable with rabbit antibodies to a synthetic peptide corresponding to amino acids 120-145 of the pre-S2 region of serotype adw [pre-S(120-145)] or with antibodies to hepatitis B virus. pre-S(120-145) completely blocked the binding of either antibody to the pre-S2 peptide-ß-galactosidase fusion protein. These results indicate that there are antigenic determinants on the fusion protein that are closely related to, if not identical to, determinants on synthetic pre-S(120-145) and on pre-S2 sequences of native hepatitis B virus particles. Thus, bacteria transformed with pWS3 can provide an abundant source of pre-S2-ß-galactosidase fusion protein, which may prove useful either as a diagnostic reagent possessing marker enzyme activity suitable for ELISA tests or as an immunogen with potential to contribute to active prophylaxis of hepatitis B
Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells
AbstractOX40 is a member of the TNF/NGF-receptor family expressed on activated T cells, whose ligand is found on activated T and B cells. In the present study, we show that cross-linking of OX40L on CD40L-stimulated B cells, αlgD dextran-stimulated B cells, or both results in a significantly enhanced proliferative response with no change In the cell survival rate. Furthermore, OX40 stimulation increases Immunoglobulin heavy chain mRNA levels and Immunoglobulin secretion, which could not be blocked by anti-cytokine antibodies. In additional molecular studies, we show that OX40L cross-linking results In the down-regulation of the transcription factor BSAP. This, In turn, leads to a change In the In vivo binding pattern of the imunoglobulin heavy chain gene 3′ α enhancer, suggesting its activation. This effect may thus be one mechanism for OX40-induced Increase In Immunoglobulin secretion. In conclusion, our data suggest that the OX40-OX40L interaction is a novel pathway in T cell-dependent B cell proliferation and differentiation
Hypermodification and Immune Escape of an Internally Deleted Middle-Envelope (M) Protein of Frequent and Predominant Hepatitis B Virus Variants
AbstractNaturally occurring deletions within the human hepatitis B virus (HBV) preS2 region have frequently been identified in patients with hepatocellular carcinoma (HCC), while chronic carriers without cirrhosis and HCC contain no detectable preS2 deletion variants. We have characterized two different preS2 internal deletion variants from two patients. In addition to several weak phenotypes, our study revealed three unexpected strong phenotypes: (1) a paradoxical “hypermodification” phenomenon was observed with significantly increased size heterogeneity and molecular weights of the secreted middle (M) envelope proteins containing a preS2 internal deletion. This phenomenon was observed in transient transfection with a human hepatoma Huh7 cell line as well as in stable transfection with a rodent hepatoma cell line 7777. (2) A significantly increased intracellular accumulation of all three envelope proteins (large, middle, and small) was detected by both Western blot analysis and immunofluorescence microscopy. (3) The middle envelope proteins with a preS2 internal deletion were not recognized in vitro by a putative neutralizing antiserum, suggesting that these variants can evade immune recognition in vivo. To our knowledge, this is the first identification and characterization of the M deletion variant protein in HBV natural infection
- …