67 research outputs found

    Theoretical study of isolated dangling bonds, dangling bond wires and dangling bond clusters on H:Si(100)-(2×\times1) surface

    Full text link
    We theoretically study the electronic band structure of isolated unpaired and paired dangling bonds (DB), DB wires and DB clusters on H:Si(100)-(2×\times1) surface using Extended H\"uckel Theory (EHT) and report their effect on the Si band gap. An isolated unpaired DB introduces a near-midgap state, whereas a paired DB leads to π\pi and π\pi^* states, similar to those introduced by an unpassivated asymmetric dimer (AD) Si(100)-(2×\times1) surface. Such induced states have very small dispersion due to their isolation from the other states, which reside in conduction and valence band. On the other hand, the surface state induced due to an unpaired DB wire in the direction along the dimer row (referred to as [1ˉ10][\bar{1}10]), has large dispersion due to the strong coupling between the adjacent DBs, being 3.84A˚\AA apart. However, in the direction perpendicular to the dimer row (referred to as [110]), due to the reduced coupling between the DBs being 7.68A˚\AA apart, the dispersion in the surface state is similar to that of an isolated unpaired DB. Apart from this, a paired DB wire in [1ˉ10][\bar{1}10] direction introduces π\pi and π\pi^* states similar to those of an AD surface and a paired DB wire in [110] direction exhibits surface states similar to those of an isolated paired DB, as expected. Besides this, we report the electronic structure of different DB clusters, which exhibit states inside the band gap that can be interpreted as superpositions of states due to unpaired and paired DBs.Comment: 7 pages, 10 figure, 1 tabl

    Multiple configurations of N-methylpyrrole binding on Si(111)-7×7

    Get PDF
    The adsorption configurations of N-methylpyrrole on Si(111)-7×7 were investigated using high-resolution electron energy-loss spectroscopy, x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and density function theory calculations. Compared to physisorbed N-methylpyrrole, chemisorbed molecules present a different vibrational feature at 2886 cm-1 attributable to ν[(Si)Csp3-H] in addition to the vibrational features of (sp2)Cα-H (3106 cm-1), (sp2)Cβ-H (3050 cm-1), and C—H of CH3 (2944 cm-1) stretching modes, demonstrating the direct interaction between C=C bonds and Si(111)-7×7. The major change of N 1s XPS spectrum of N-methylpyrrole upon chemisorption strongly suggests the coexistence of two chemisorption states, further confirmed in the strong dependence of STM image features on the sample bias together with statistical analysis. The concurrent occurrence of [4+2] and [2+2] cycloadditions is proposed to account for these two adsorption configurations of N-methylpyrrole on Si(111)-7×
    corecore