2,768 research outputs found

    Establishing Social Work Practices in England: The Early Evidence

    Get PDF
    Social Work Practices (SWPs) were established in England in 2009 to deliver social work services to looked after children and care leavers. The introduction of independent social work-led organisations generated controversy focused on issues such as the privatisation of children's services and social workers' conditions of employment. This paper reports early findings from the evaluation of four of these pilots, drawing on interviews with children and young people, staff, and local authority and national stakeholders. The SWPs assumed a variety of organisational forms. The procurement process was demanding, with protracted negotiations over matters such as budgetary control and providing a round-the-clock service. Start-up was facilitated by an established relationship between the SWP provider and the local authority. Once operational, SWPs continued to rely on local authorities for various functions; in most cases, local authorities retained control of placement budgets. Levels of consultation and choice offered to children and young people regarding the move to an SWP varied considerably. Children's understanding about SWPs was generally low except in the pilot where most children retained their original social worker. These early findings show some dilution of the original SWP model, while the pilots' diversity allows the benefits of particular models to emerge

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure

    Climate change mitigation strategies for mechanically controlled repositories: The case of The National Archives, Kew

    Get PDF
    A computer based building simulation model was developed to examine the energy load and environmental management in The National Archives Q1 repository building in Kew, UK to optimise environmental management and examine the impacts of climate change. The need to accurately simulate the hygrothermal environment inside the archive building which houses mainly paper-based records led to the choice of EnergyPlus as the modelling software. The study presents the simulation results of five environmental strategies which predict energy saving potential as high as 43% without significantly affecting the quality of the preservation environment. The effect of climate change is predicted to have little impact on the archive environment due to the filtering effect of the air conditioning system. On the other hand, an increase in total energy load by 15% and 24% is predicted under the worst case climate change scenario in 2050 and 2080, respectively, if the current environmental management practice is continued into the future. However, the identified energy saving strategies could represent possible mitigative solutions in reducing future energy load against the impact of climate change

    Incorporating Redispersal Microsites into Myrmecochory in Eastern North American Forests

    Get PDF
    Studies addressing the benefits of “directed dispersal” in ant seed dispersal systems have highlighted the beneficial soil properties of the nests of ants that disperse their seeds. No studies, however, have explored the properties of soils nearby exemplary seed-dispersing ant nests, where recent work indicates that seeds are quickly “redispersed” in eastern North America. To address this, we focused on a forested ecosystem in eastern United States where a keystone seed-dispersing ant, Aphaenogaster rudis, commonly disperses the seeds of numerous understory herbs, including Jeffersonia diphylla. We collected soil cores beneath J. diphylla, around A. rudis nests where seeds are dispersed, and from other forest locations. We analyzed the collected soils for microbial activity using potential soil enzyme activity as a proxy, as well as a number of environmental parameters. We followed this with a glasshouse experiment testing whether the soils collected from near nests, beneath J. diphylla, and from other forested areas altered seedling emergence. We found that microbial activities were higher in near-nest microsites than elsewhere. Specifically, the potential enzyme activities of a carbon-degrading enzyme (β-glucosidase), a phosphorus-acquiring enzyme (phosphatase), and a sulfur-acquiring enzyme (sulfatase) were all significantly higher in areas near ant nests than elsewhere; this same pattern, although not significant, was found for the nitrogen-acquiring enzyme NAGase. No differences were found in other environmental variables we investigated (e.g., soil temperature, soil moisture, soil pH). Our field results indicate that soil biological processes are significantly different in near-nest soils, where the seeds are ultimately dispersed. However, our glasshouse germination trials revealed no enhanced germination in near-nest soils, thereby refuting any near-term advantages of directed dispersal to near-nest locations. Future work should be directed toward addressing whether areas near ant nests provide biologically meaningful escape from seed predation and enhanced establishment, and further characterization of soil microbial communities in such settings

    Nonpolar optical scattering of positronium in magnesium fluoride

    Get PDF
    We report the results of the analysis of the temperature broadening of the momentum distribution of delocalized Positronium (Ps) in Magnesium Fluoride in terms of optical deformation-potential scattering model (long-wavelength optical phonons). The Ps optical deformation-potential coupling constant DoD_{o} in MgF2_{2} has been determined to be (1.8±0.3)×109(1.8\pm0.3)\times10^{9} eV/cm. We also show that the Ps momentum distribution is sensitive to second-order phase transitions in those crystals where optical deformation-potential scattering is allowed in one and forbidden in another crystalline phase

    Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation

    Full text link
    Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using the parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 K to 500 K, the dependence of the Seebeck coefficient, the electron thermal and electrical conductivity as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration are investigated in the constant-relaxation-time approximation. The carrier confinement is shown to play essential role for square nanowires with thickness less than 30 nm. The confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of Seebeck coefficient in contrast to the excess holes (impurities). The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. The carrier confinement increases maximum value of ZT and shifts it towards high temperatures. For the p-type bismuth telluride nanowires with growth direction [110], the maximum value of the figure of merit is equal to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for sections 2-

    Biogenesis of the mitochondrial phosphate carrier

    Get PDF
    The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct amino-terminus of the mature protein was generated. Import of PiC showed the characteristics of mitochondrial protein uptake, such as dependence on ATP and a membrane potential and involvement of contact sites between mitochondrial outer and inner membranes. The precursor imported in vitro was correctly assembled into the functional form, demonstrating that the authentic import and assembly pathway of PiC was reconstituted when starting with the presequence-carrying precursor. These results are discussed in connection with the recently postulated role of PiC as an import receptor located in the outer membrane

    Monte-Carlo simulations of the recombination dynamics in porous silicon

    Full text link
    A simple lattice model describing the recombination dynamics in visible light emitting porous Silicon is presented. In the model, each occupied lattice site represents a Si crystal of nanometer size. The disordered structure of porous Silicon is modeled by modified random percolation networks in two and three dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs have been studied. Radiative and non-radiative processes as well as hopping between nearest neighbor occupied sites are taken into account. By means of extensive Monte-Carlo simulations, we show that the recombination dynamics in porous Silicon is due to a dispersive diffusion of excitons in a disordered arrangement of interconnected Si quantum dots. The simulated luminescence decay for the excitons shows a stretched exponential lineshape while for uncorrelated electron-hole pairs a power law decay is suggested. Our results successfully account for the recombination dynamics recently observed in the experiments. The present model is a prototype for a larger class of models describing diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to [email protected]

    Regularization of the Coulomb scattering problem

    Get PDF
    Exact solutions of the Schr\"odinger equation for the Coulomb potential are used in the scope of both stationary and time-dependent scattering theories in order to find the parameters which define regularization of the Rutherford cross-section when the scattering angle tends to zero but the distance r from the center remains fixed. Angular distribution of the particles scattered in the Coulomb field is investigated on the rather large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is not available in the case when small scattering angles are considered. Unitary property of the scattering matrix is analyzed and the "optical" theorem for this case is discussed. The total and transport cross-sections for scattering of the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the considered effects can be essential for the observed characteristics of the transport processes in semiconductors which are defined by the electron and hole scattering in the fields of the charged impurity centers.Comment: 20 pages, 6 figure
    • …
    corecore