13,843 research outputs found

    Free radical OH, a molecule of astrophysical and aeronomic interest

    Get PDF
    The chemistry and physics of the gaseous OH free radical as it applies to interstellar space, planetary atmospheres, and the sun is presented. Topics considered are: (1) rotational-vibrational transitions; (2) dissociation and ionization processes; (3) spectral characteristics

    Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009

    Get PDF
    Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity

    Criticality of tuning in athermal phase transitions

    Full text link
    We experimentally address the importance of tuning in athermal phase transitions, which are triggered only by a slowly varying external field acting as tuning parameter. Using higher order statistics of fluctuations, a singular critical instability is detected for the first time in spite of an apparent universal self-similar kinetics over a broad range of driving force. The results as well as the experimental technique are likely to be of significance to many slowly driven non-equilibrium systems from geophysics to material science which display avalanche dynamics.Comment: 5 pages, 4 figure

    Diphoton Resonances in the Renormalizable Coloron Model

    Get PDF
    The renormalizable coloron model, which has previously been shown in the literature to be consistent with a wide array of theoretical and precision electroweak constraints, includes a pair of spinless bosons (one scalar, one pseudoscalar). We show that either of them, or both together if they are degenerate, could be responsible for the diphoton resonance signal for which both CMS and ATLAS have seen evidence. Because either of these bosons would be produced and decay through loops of spectator fermions, the absence of signals in dijet, ttˉt\bar{t}, and electroweak boson pair channels is not a surprise.Comment: 18 pages, 5 figures. (Modified to respond to referee comments, discussion of Landau poles in scalar couplings added.

    Color Discriminant Variable to Separate Dijet Resonances at the LHC

    Get PDF
    A narrow resonance decaying to dijets could be discovered at the 14 TeV run of the LHC. To quickly identify its color structure in a model-independent manner, we introduced a method based on a color discriminant variable, determined from the measurements of the resonance's production cross section, mass and width. This talk introduces a more transparent theoretical formulation of the color discriminant variable that highlights its relationship to the branching ratios of the resonance into incoming and outgoing partons and to the properties of those partons. The formulation makes it easier to predict the value of the variable for a given class of resonance. We show that this method applies well to color-triplet and color-sextet scalar diquarks, distinguishing them clearly from other candidate resonances.Comment: 9 pages, 3 figures. Presentation at the DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 201

    The Color Discriminant Variable and Scalar Diquarks at the LHC

    Get PDF
    The LHC is actively searching for narrow dijet resonances corresponding to physics beyond the Standard Model. Among the many resonances that have been postulated (e.g., colored vectors, scalars, and fermions) one that would have a particularly large production rate at the LHC would be a scalar diquark produced in the s-channel via fusion of two valence quarks. In previous work, we introduced a color discriminant variable that distinguishes among various dijet resonances, drawing on measurements of the dijet resonance mass, total decay width and production cross-section. Here, we show that this model-independent method applies well to color-triplet and color-sextet scalar diquarks, distinguishing them clearly from other candidate resonances. We also introduce a more transparent theoretical formulation of the color discriminant variable that highlights its relationship to the branching ratios of the resonance into incoming and outgoing partons and to the properties of those partons. While the original description of the color discriminant variable remains convenient for phenomenological use upon discovery of a new resonance, the new formulation makes it easier to predict the value of the variable for a given class of resonance.Comment: 22 pages, 11 pdf figures. One reference added, one updated. arXiv admin note: text overlap with arXiv:1406.200
    corecore