2,613 research outputs found

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Get PDF
    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS

    Rhythmic inhibition allows neural networks to search for maximally consistent states

    Full text link
    Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits yet its computational role still remains elusive. We show that a model of Gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multi-stability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework which can be used to model other 'perceptual inference' phenomena

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 3: ARAMIS overview

    Get PDF
    An overview of automation, robotics, and machine intelligence systems (ARAMIS) is provided. Man machine interfaces, classification, and capabilities are considered

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    On Byzantine Broadcast in Loosely Connected Networks

    Full text link
    We consider the problem of reliably broadcasting information in a multihop asynchronous network that is subject to Byzantine failures. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the authentic message and nothing else), but they require a highly connected network. An approach giving only probabilistic guarantees (correct nodes deliver the authentic message with high probability) was recently proposed for loosely connected networks, such as grids and tori. Yet, the proposed solution requires a specific initialization (that includes global knowledge) of each node, which may be difficult or impossible to guarantee in self-organizing networks - for instance, a wireless sensor network, especially if they are prone to Byzantine failures. In this paper, we propose a new protocol offering guarantees for loosely connected networks that does not require such global knowledge dependent initialization. In more details, we give a methodology to determine whether a set of nodes will always deliver the authentic message, in any execution. Then, we give conditions for perfect reliable broadcast in a torus network. Finally, we provide experimental evaluation for our solution, and determine the number of randomly distributed Byzantine failures than can be tolerated, for a given correct broadcast probability.Comment: 1

    Bounded Counter Languages

    Full text link
    We show that deterministic finite automata equipped with kk two-way heads are equivalent to deterministic machines with a single two-way input head and k1k-1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of a1a2...ama_1^*a_2^*... a_m^* for a fixed sequence of symbols a1,a2,...,ama_1, a_2,..., a_m. Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters
    corecore