1,902 research outputs found

    UAG R-268

    Get PDF
    This study was supported by the Bureau of Land Management through interagency agreement with the National Oceanic and Atmospheric Administration under which a multi-year program responding to need of petroleum development of the Alaskan continental shelf is managed by the Outer Continental Shelf Environmental Assessment Program (OCSEAP) Office. Drawings were done by Debbie Cocci a and Jim Burton. The idea of this project arose during a conversation between George Edwardson, Jr., and one of the Principal Investigators. Rachael Craig and Edna MacLean helped in initiating the project and Mrs. Molly Pederson of the North Slope Borough Inupiaq Language Commission obtained some of the narratives and interviews and provided translations. Teri McClung assisted with transcription of interviews and editing. Finally, the hospitality of the family of Kenneth Toovak during the translation process is gratefully acknowledged.The objective of this program was to extend the data base on ice hazards along the Beaufort Sea coast of Alaska backward in time by using the knowledge and understanding of ice and weather conditions of the local residents. Information for this pilot project was obtained through direct interviews with residents, or from narratives supplied by them. The results of these procedures were evaluated to provide a basis for improving similar efforts in future. Observations of particular interest obtained from these interviews and narratives include (1 ) a description of a major motion of the landfast ice off Harrison Bay in late February, (2) a description of the formation of ice push ridges and ride-up at Cape Halkett during break up, (3) reports of whales traveling inshore of Cross Island during the fall migration and of whales being taken by crews from the Prudhoe Bay area at that time of year, and 4) descriptions of conditions in the nearshore area during summer. In addition information of historical and cultural interest was obtained.Supported by NOAA Contract 03-5-022-55, Task No. 6ABSTRACT -- ACKNOWLEDGEMENTS -- TABLE OF CONTENTS : INTRODUCTION ; PROCEDURES ; RESULTS ; DISCUSSION AND EVALUATION -- APPENDIX I -- APPENDIX II -- APPENDIX II

    Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors

    Full text link
    We study the transport of spin polarized electrons in n-GaAs using spatially resolved continuous wave Faraday rotation. From the measured steady state distribution, we determine spin relaxation times under drift conditions and, in the presence of strain, the induced spin splitting from the observed spin precession. Controlled variation of strain along [110] allows us to deduce the deformation potential causing this effect, while strain along [100] has no effect. The electric field dependence of the spin lifetime is explained quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure

    Exact analytic results for the Gutzwiller wave function with finite magnetization

    Full text link
    We present analytic results for ground-state properties of Hubbard-type models in terms of the Gutzwiller variational wave function with non-zero values of the magnetization m. In dimension D=1 approximation-free evaluations are made possible by appropriate canonical transformations and an analysis of Umklapp processes. We calculate the double occupation and the momentum distribution, as well as its discontinuity at the Fermi surface, for arbitrary values of the interaction parameter g, density n, and magnetization m. These quantities determine the expectation value of the one-dimensional Hubbard Hamiltonian for any symmetric, monotonically increasing dispersion epsilon_k. In particular for nearest-neighbor hopping and densities away from half filling the Gutzwiller wave function is found to predict ferromagnetic behavior for sufficiently large interaction U.Comment: REVTeX 4, 32 pages, 8 figure

    Turning a First Order Quantum Phase Transition Continuous by Fluctuations: General Flow Equations and Application to d-Wave Pomeranchuk Instability

    Full text link
    We derive renormalization group equations which allow us to treat order parameter fluctuations near quantum phase transitions in cases where an expansion in powers of the order parameter is not possible. As a prototypical application, we analyze the nematic transition driven by a d-wave Pomeranchuk instability in a two-dimensional electron system. We find that order parameter fluctuations suppress the first order character of the nematic transition obtained at low temperatures in mean-field theory, so that a continuous transition leading to quantum criticality can emerge

    Soft Fermi Surfaces and Breakdown of Fermi Liquid Behavior

    Full text link
    Electron-electron interactions can induce Fermi surface deformations which break the point-group symmetry of the lattice structure of the system. In the vicinity of such a "Pomeranchuk instability" the Fermi surface is easily deformed by anisotropic perturbations, and exhibits enhanced collective fluctuations. We show that critical Fermi surface fluctuations near a d-wave Pomeranchuk instability in two dimensions lead to large anisotropic decay rates for single-particle excitations, which destroy Fermi liquid behavior over the whole surface except at the Brillouin zone diagonal.Comment: 12 pages, 2 figures, revised version as publishe

    d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model

    Full text link
    We present a systematic stability analysis for the two-dimensional Hubbard model, which is based on a new renormalization group method for interacting Fermi systems. The flow of effective interactions and susceptibilities confirms the expected existence of a d-wave pairing instability driven by antiferromagnetic spin fluctuations. More unexpectedly, we find that strong forward scattering interactions develop which may lead to a Pomeranchuk instability breaking the tetragonal symmetry of the Fermi surface.Comment: 4 pages (RevTeX), 4 eps figure

    Slave-Boson Mean-Field Theory of the Antiferromagnetic State in the Doubly Degenerate Hubbard Model - the Half-Filled Case -

    Full text link
    The antiferromagnetic ground state of the half-filled Hubbard model with the doubly degenerate orbital has been studied by using the slave-boson mean-field theory which was previously proposed by the present author. Numerical calculations for the simple cubic model have shown that the metal-insulator transition does not take place except at the vanishing interaction point, in strong contrast with its paramagnetic solution. The energy gap in the density of states of the antiferromagnetic insulator is much reduced by the effect of electron correlation. The exchange interaction JJ plays an important role in the antiferromagnetism: although for J=0J = 0 the sublattice magnetic moment mm in our theory is fairly smaller than mHFAm_{HFA} obtained in the Hartree-Fock approximation, mm for J/U>0.2J/U > 0.2 (UU: the Coulomb interaction) is increased to become comparable to mHFAm_{HFA}. Surprisingly, the antiferromagnetic state is easily destroyed if a small, negative exchange interaction (J/U<0.05J/U < -0.05) is introduced.Comment: Latex 18 pages, 12 figures available on request to [email protected] Note: published in Phys. Rev. B with some minor modification

    Quantum phase transitions and collapse of the Mott gap in the d=1+ϵd=1+\epsilon dimensional half-filled Hubbard model

    Get PDF
    We study the low-energy asymptotics of the half-filled Hubbard model with a circular Fermi surface in d=1+ϵd=1+\epsilon continuous dimensions, based on the one-loop renormalization-group (RG) method. Peculiarity of the d=1+ϵd=1+\epsilon dimensions is incorporated through the mathematica structure of the elementary particle-partcile (PP) and particle-hole (PH) loops: infrared logarithmic singularity of the PH loop is smeared for ϵ>0\epsilon>0. The RG flows indicate that a quantum phase transition (QPT) from a metallic phase to the Mott insulator phase occurs at a finite on-site Coulomb repulsion UU for ϵ>0\epsilon>0. We also discuss effects of randomness.Comment: 12 pages, 10 eps figure

    Slave-Boson Functional-Integral Approach to the Hubbard Model with Orbital Degeneracy

    Full text link
    A slave-boson functional-integral method has been developed for the Hubbard model with arbitrary, orbital degeneracy DD. Its saddle-point mean-field theory is equivalent to the Gutzwiller approximation, as in the case of single-band Hubbard model. Our theory is applied to the doubly degenerate (D=2D = 2) model, and numerical calculations have been performed for this model in the paramagnetic states. The effect of the exchange interaction on the metal-insulator (MI) transition is discussed. The critical interaction for the MI transition is analytically calculated as functions of orbital degeneracy and electron occupancy.Comment: Latex 20 pages, 9 figures available on request to [email protected] Note: published in J. Physical Society of Japan with some minor modification

    Numerical renormalization group study of the symmetric Anderson-Holstein model: phonon and electron spectral functions

    Full text link
    We study the symmetric Anderson-Holstein (AH) model at zero temperature with Wilson's numerical renormalization group (NRG) technique to study the interplay between the electron-electron and electron-phonon interactions. An improved method for calculating the phonon propagator using the NRG technique is presented, which turns out to be more accurate and reliable than the previous works in that it calculates the phonon renormalization explicitly and satisfies the boson sum rule better. The method is applied to calculate the renormalized phonon propagators along with the electron propagators as the onsite Coulomb repulsion UU and electron-phonon coupling constant gg are varied. As gg is increased, the phonon mode is successively renormalized, and for ggcog \gtrsim g_{co} crosses over to the regime where the mode splits into two components, one of which approaches back to the bare frequency and the other develops into a soft mode. The initial renormalization of the phonon mode, as gg is increased from 0, depends on UU and the hybridization Δ\Delta; it gets softened (hardened) for U()Us(Δ)U \gtrsim (\lesssim) U_s (\Delta). Correlated with the emergence of the soft mode is the central peak of the electron spectral function severely suppressed. These NRG calculations will be compared with the standard Green's function results for the weak coupling regime to understand the phonon renormalization and soft mode.Comment: 18 pages, 4 figures. Submitted to Phys. Rev.
    corecore