191 research outputs found

    A Family of Water Immiscible, Dipolar Aprotic, Diamide Solvents from Succinic Acid

    Get PDF
    Three dipolar aprotic solvents were designed to possess high dipolarity and low toxicity: N , N , N ', N '-tetrabutylsuccindiamide (TBSA), N , N '-diethyl- N , N '-dibutylsuccindiamide (EBSA), N , N '-dimethyl- N , N '-dibutylsuccindiamide (MBSA). They were synthesized catalytically using a K60 silica catalyst in a solventless system. Their water-immiscibility stands out as an unusual and useful property for dipolar aprotic solvents. They were tested in a model Heck reaction, metal-organic framework syntheses, and a selection of polymer solubility experiments where their performances were found to be comparable to traditional solvents. Furthermore, MBSA was found to be suitable for the production of an industrially-relevant membrane from polyethersulphone. An integrated approach involving in silico analysis based on available experimental information, prediction model outcomes and read across data, as well as a panel of in vitro reporter gene assays covering a broad range of toxicological endpoints was used to assess toxicity. These in silico and in vitro tests suggested no alarming indications of toxicity in the new solvents

    Cost-Effectiveness of Interventions to Prevent Disability in Leprosy: A Systematic Review

    Get PDF
    Background: Prevention of disability (POD) is one of the key objectives of leprosy programmes. Recently, coverage and access have been identified as the priority issues in POD. Assessing the cost-effectiveness of POD interventions is highly relevant to understanding the barriers and opportunities to achieving universal coverage and access with limited resources. The purpose of this study was to systematically review the quality of existing cost-effectiveness evidence and discuss implications for future research and strategies to prevent disability in leprosy and other disabling conditions. Methodology/Principal Findings: We searched electronic databases (NHS EED, MEDLINE, EMBASE, and LILACS) and databases of ongoing trials (www.controlled-trials.com/mrct/, www.who.int/trialsearch). We checked reference lists and contacted experts for further relevant studies. We included studies that reported both cost and effectiveness outcomes of two or more alternative interventions to prevent disability in leprosy. We assessed the quality of the identified studies using a standard checklist for critical appraisal of economic evaluations of health care programmes. We found 66 citations to potentially relevant studies and three met our criteria. Two were randomised controlled trials (footwear, management of neuritis) and one was a generic model-based study (cost per DALY). Generally, the studies were small in size, reported inadequately all relevant costs, uncertainties in estimates, and issues of concern and were based on limited data sources. No cost-effectiveness data on self-care, which is a key strategy in POD, was found. Conclusion/Significance: Evidence for cost-effectiveness of POD interventions for leprosy is scarce. High quality research is needed to identify POD interventions that offer value for money where resources are very scarce, and to develop strategies aimed at available, affordable and sustainable quality POD services for leprosy. The findings are relevant for other chronically disabling conditions, such as lymphatic filariasis, Buruli ulcer and diabetes in developing countries

    Precision bond lengths for Rydberg Matter clusters KN (N = 19, 37, 61 and 91) in excitation levels n = 4 - 8 from rotational radio-frequency emission spectra

    Get PDF
    Clusters of the electronically excited condensed matter Rydberg Matter (RM) are planar and six-fold symmetric with magic numbers N = 7, 19, 37, 61 and 91. The bond distances in the clusters are known with a precision of +- 5% both from theory and Coulomb explosion experiments. Long series of up to 40 consecutive lines from rotational transitions in such clusters are now observed in emission in the radio-frequency range 7-90 MHz. The clusters are produced in five different vacuum chambers equipped with RM emitters. The most prominent series with B = 0.9292 +- 0.0001 MHz agrees accurately with expectation (within 2%) for the planar six-fold symmetric cluster K19 in excitation level n = 4. Other long series agree even better with K19 at n = 5 and 6. The ratio between the interatomic distance and the theoretical electron orbit radius (the dimensional ratio) for K19 in n = 4 is found to be 2.8470 +- 0.0003. For clusters K19 (n = 6) and K37 (n = 7 and 8) the dimensional ratio 2.90 is the highest value that is found, which happens to be exactly the theoretical value. Clusters K61 and K91 in n = 5 and 6 have slightly lower dimensional ratios. This is expected since the edge effects are smaller. Intensity alternations are observed of approximately 7:3. The nuclear spins interact strongly with the magnetic field from the orbiting electrons. Spin transitions are observed with energy differences corresponding accurately (within 0.6%) to transitions with apparent total (delta)F = -3 at excitation levels n = 5 and 6. The angular momentum coupling schemes in the clusters are complex but well understood.Comment: 37 pages, 14 figure

    The Carboxy-Terminal Domain of Dictyostelium C-Module-Binding Factor Is an Independent Gene Regulatory Entity

    Get PDF
    The C-module-binding factor (CbfA) is a multidomain protein that belongs to the family of jumonji-type (JmjC) transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF) motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD). An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo

    Novel (sulfated) thyroid hormone transporters in the solute carrier 22 family

    Get PDF
    Objective: Thyroid hormone (TH) transport represents a critical first step in governing intracellular TH regulation. It is still unknown whether the full repertoire of TH transporters has been identified. Members of the solute carrier (SLC) 22 family have substrates in common with the known TH transporters of the organic anion-transporting peptide family. Therefore, we screened the SLC22 family for TH transporters Methods: Uptake of 1 nM of iodothyronines or sulfated iodothyronines in COS1 cells expressing SLC22 proteins was performed. Results: We first tested 25 mouse (m) SLC22 proteins for TH uptake and fo und that the majority of the organic anion transporter (OAT) clade were capable of 3,3’,5-triiodothyronine and/or thyroxine (T4) transport. Based on phylogenetic tree analysis of the mouse and human (h) SLC22 family, we selected eight hSLC22s that grouped with the newly identified mouse TH transporters. Of thes e, four tested positive for uptake of one or more substrates, particularly hSLC22A11 showed robust (3-fold over control) uptake of T4. Uptake of sulfated iodothyronines was strongly (up to 17-fold) induced by some SLC22s, most notably SLC22A8, hSLC22A9, mSLC22A27 and mSLC22A29. Finally, the zebrafish orthologues of SLC22A6/8 drOat x and drSlc22a6l also transported almost all (sulfated) iodothyronines tested. The OAT inhibitors lesinurad and probenecid inhibited most SLC22 proteins. Conclusions: Our results demonstrated that members of the OAT clade of the SLC22 family constitute a novel, evolutionary conserved group of transporters for (sulfated) iodothyronines. Future studies should reveal the relevance of these transporters in TH homeostasis and physiology

    Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia

    Get PDF
    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality

    Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project

    Get PDF
    The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation

    Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway

    Get PDF
    We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system

    Irradiation-Induced Deinococcus radiodurans Genome Fragmentation Triggers Transposition of a Single Resident Insertion Sequence

    Get PDF
    Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA–damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences
    corecore