861 research outputs found

    Argon Plasma Coagulation in Barrett's Esophagus

    Get PDF
    AbstractIn the present case, thermal ablation of the Barrett's remainder by argon plasma coagulation (APC) is shown in a patient recently cured of early Barrett's cancer by endoscopic resection. Ablation is carried out in order to reduce the risk of metachronous neoplasia in the residual nonneoplastic Barrett's esophagus.APC is applied dynamically in longitudinal and circumferential stripes, and a wattage of 50 is used. In this patient, the Barrett's segment is completely ablated in one session. This article is part of an expert video encyclopedia

    Estimation and model selection of copulas with an application to exchange rates

    Get PDF

    Congenital anterolateral tibial bowing and polydactyly: a case report

    Get PDF
    Congenital anterolateral bowing of the tibia is a rare deformity that may lead to pseudarthrosis and risk of fracture. This is commonly associated with neurofibromatosis type 1. In this report, we describe a 15-month old male with congenital anterolateral bowing of the right tibia and associated hallux duplication. This is a distinct entity with a generally favourable prognosis that should not be confused with other conditions such as neurofibromatosis type 1. Previously published cases are reviewed

    KELT-2Ab: A Hot Jupiter Transiting the Bright (V=8.77) Primary Star of a Binary System

    Get PDF
    We report the discovery of KELT-2Ab, a hot Jupiter transiting the bright (V=8.77) primary star of the HD 42176 binary system. The host is a slightly evolved late F-star likely in the very short-lived "blue-hook" stage of evolution, with \teff=6148\pm48{\rm K}, log⁥g=4.030−0.026+0.015\log{g}=4.030_{-0.026}^{+0.015} and \feh=0.034\pm0.78. The inferred stellar mass is M∗=1.314−0.060+0.063M_*=1.314_{-0.060}^{+0.063}\msun\ and the star has a relatively large radius of R∗=1.836−0.046+0.066R_*=1.836_{-0.046}^{+0.066}\rsun. The planet is a typical hot Jupiter with period 4.11379±0.000014.11379\pm0.00001 days and a mass of MP=1.524±0.088M_P=1.524\pm0.088\mj\ and radius of RP=1.290−0.050+0.064R_P=1.290_{-0.050}^{+0.064}\rj. This is mildly inflated as compared to models of irradiated giant planets at the ∌\sim4 Gyr age of the system. KELT-2A is the third brightest star with a transiting planet identified by ground-based transit surveys, and the ninth brightest star overall with a transiting planet. KELT-2Ab's mass and radius are unique among the subset of planets with V<9V<9 host stars, and therefore increases the diversity of bright benchmark systems. We also measure the relative motion of KELT-2A and -2B over a baseline of 38 years, robustly demonstrating for the first time that the stars are bound. This allows us to infer that KELT-2B is an early K-dwarf. We hypothesize that through the eccentric Kozai mechanism KELT-2B may have emplaced KELT-2Ab in its current orbit. This scenario is potentially testable with Rossiter-McLaughlin measurements, which should have an amplitude of ∌\sim44 m s−1^{-1}.Comment: 9 pages, 2 tables, 4 figures. A short video describing this paper is available at http://www.youtube.com/watch?v=wVS8lnkXXlE. Revised to reflect the ApJL version. Note that figure 4 is not in the ApJL versio

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∌600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∌1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    A Giant Planet Undergoing Extreme-Ultraviolet Irradiation By Its Hot Massive-Star Host

    Get PDF
    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside2, and is highly inflated–traits that have been linked to high insolation3,4. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star (ref. 6)

    The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [O-15]H2O

    Get PDF
    Background: Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients.Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] x 100%.Results: RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high.Conclusions: This study is the first to report [O-15]H2O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [O-15]H2O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [O-15]H2O PET method in evaluation of renal blood flow
    • 

    corecore