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Abstract

Copulas are the part of a multivariate distribution function that fully captures the
cross sectional dependence between the variables of interest and they have become
a very popular tool to model dependencies different from the linear correlation of
elliptical distributions. We review the theory of copula functions, present a number of
examples and describe how to sample random data from these. Different techniques for
estimation and model selection are discussed and compared in an extensive Monte Carlo
study. We find that a test not considered in the literature, namely the Jarque-Bera
test applied on transformed data from the conditional copula, has the best properties
of the presented tests, but that the most reliable criterion for selecting the best fitting
copula is the Akaike information criterion. We model exchange rate returns of Latin
American currencies against the euro with copulas and we find evidence of symmetric
dependence, excess upper tail dependence and excess lower tail dependence.
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1 Introduction

An assumption that is often made about the (joint) distribution of financial variables is that
of normality. The dependence between variables that have a multivariate normal distribution
is purely determined by the linear correlation coefficient. However, empirical findings show
that asset returns have skewed and leptokurtic marginal distributions and that the depen-
dence between these asset returns goes beyond the simple linear form. There is evidence
that extreme co-movements (known as tail area dependence) occur and that some markets
may be more dependent during extreme downward movements then when they are moving
upwards. Simply looking at linear correlation in a non-elliptical world can be misleading as
described by Embrechts et al. (2002). Copula functions allow for modeling joint multivariate
distributions in a simple and extremely flexible way. Copulas are able to yield any kind of
dependence structure independently of the marginal distributions. Whereas the bivariate
Normal distribution requires its margins to be normally distributed as well, a Gaussian cop-
ula is characterized by the correlation coefficient if the margins were normally distributed.
They can take on any distribution, which need not even be equal for all the margins. This
explains the simple algorithm for simulating data from a Gaussian copula, which simply
requires imposing linear dependence on a number of normally distributed variables by pre-
multiplying the series with the Cholesky decomposition of the desired covariance matrix
and then using Fisher’s probability integral transform to give the marginals any distribution
desired. Other copulas cannot be understood in such a simple way and they allow for very
different types of nonlinear dependence. This may be depicted by graphing the relationship
between the parameter of a given copula and the corresponding linear correlation coefficient,
which will be a nonlinear one.
The Latin word ”copula” means ”link, tie, bond”. Copulas (or copulae when using the Latin
plural) were first introduced by Sklar (1959), who proved the main result on copulas known
as Sklar’s theorem. They offer scale invariant measures of dependence, so dependence is not
affected by increasing transformations in any of the variables. Their use in econometrics
developed over the last 15 years, but they become more and more popular as more useful
applications in finance arise. One application where copulas turn out to be very useful is
quite obviously the Value-at-Risk of a portfolio, as it might differ quite significantly when
comparing its value under the assumption of joint normality and when having heavy tailed
margins and a copula that allows for a higher dependence during market downturns (see
for example Junker and May (2005). Copulas offer further applications in risk management
like modeling joint defaults for credit risks or when pricing exotic options with two or more
underlying assets. Cherubini et al. (2004) show many applications of copulas in finance.
Further uses are the construction of investment portfolios and the more realistic simulation
of asset returns. Another application suggested is modeling autoregressive dynamic processes
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using copulas to capture the time dependence in one variable rather than the dependence
between two or more variables as in Bouyé et al. (2001). More mathematical treatments of
copulas are the books by Nelson (2006) and Joe (1997) or Embrechts et al. (2003).
In this paper we aim at reviewing the theory needed to understand copula based modeling
and apply it to a given data set. We focus mainly on techniques for simulating random
observations from copulas, the different ways of estimating copulas and some simple model
selection techniques. We contribute to the issue of model selection by showing that selecting
the candidate copula that produces the highest Akaike information criterion is a very reliable
method and that using the Jarque-Bera test on the appropriately transformed data performs
better than some alternative tests that have been suggested in the literature.
The paper is structured as follows. The underlying theory is developed in Section 2, includ-
ing some commonly used measures of dependence and the algorithms used to simulate data
from a given copula. Furthermore we present the mostly used copula functions and their
properties. The estimation and testing of a given copula model will be discussed in Section 3
and the performance of the different methods will be analyzed with the help of Monte Carlo
studies in Section 4. In Section 5 their practical use will be illustrated by modeling the joint
distribution of exchange rates of Latin American currencies against the Euro. Finally, we
conclude in Section 6.

2 Introducing copulas and related concepts

A copula can be seen as a correspondence, which assigns the value of the joint distribution
function to each ordered pair of values of the individual distribution functions. Alternatively
it can be seen as the joint distribution function of a set of uniformly (0,1) distributed ran-
dom variables or simply as a function, which couples, or joins, the marginal distributions
with their multivariate distribution function. These ”operational” definitions serve as a good
intuition about what a copula function is.
All results in this section are derived for the bivariate case. For an extension to the multi-
variate case, which is only trivial for very few cases, see Nelson (2006). Also proofs for most
of the results mentioned can be found there.

2.1 Preliminaries and copulas defined

Before we are able to introduce copula functions themselves a number of properties need to
be presented. First of all the notion of a nondecreasing function has to be generalized for
the multivariate setting. We begin by defining the concept of a 2-increasing function. Note
that R̄ denotes the extended real line.
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Definition 2.1.1. Let S1 and S2 be nonempty subsets of R, and let H be a function
such that DomH = S1 × S2. Let B = [x1, x2] × [y1, y2] be a rectangle all of whose vertices
are in DomH. Then the H-volume of B is given by:

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) + H(x1, y1) (1)

A natural interpretation of the H-Volume is when H is a distribution function. It then rep-
resents the probability of an event occurring in the region specified, which is a rectangle in
the 2-dimensional case.

Definition 2.1.2. A 2-place real function H is 2-increasing if VH(B) ≥ 0 for all rect-
angles B whose vertices lie in DomH.

We call a function from S1 × S2 into R grounded if there is a least element in S1, as well
as in S2, let’s say a1 and a2, such that H(x,a2)=0 and H(a1,y)=0 for all (x, y) in S1 × S2.
A function that is grounded and 2-increasing is known to be increasing in each argument.
Another property that will be useful later on is the following. Let S1 and S2 have a greatest
element, b1 and b2 respectively. Then the one dimensional marginals of H(x, y) are given
by F (x) = H(x, b2) and G(y) = H(b1, y). With this at hand we are ready to present the
definition of a copula.

Definition 2.1.3. A two dimensional copula is a function C from I2 to I such that
1. C is grounded and 2-increasing.
2. C(u, 1) = u and C(1, v) = v (margins)

Hence a copula is no more than a function with I2 as its domain, I as its range, and that is
increasing in each element and has marginals.
The main result about copula functions is Sklar’s theorem (1959), which shows why copulas
are so useful for modeling multivariate distribution function.

Theorem 2.1.4 (Sklar’s theorem for continuous distributions) Let F be the dis-
tribution of X, G be the distribution of Y, and H be the joint distribution of (X,Y). Assume
that F and G are continuous. Then there exists a unique copula C such that

H(x, y) = C(F (x), G(y)),∀(x, y) ∈ R×R (2)

Conversely, if we let F and G be distribution functions and C be a copula, then the function
H defined by equation (2) is a bivariate distribution function with marginal distributions F
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and G.

In other words, the joint distribution can be represented separately by the marginal dis-
tribution functions and the copula, which completely describes the dependence between the
i.i.d. random variables X and Y .1 The converse turns out to be very useful in the con-
struction of multivariate distribution functions, as we now can take any pair of marginal
distributions and any copula to construct a bivariate distribution. This allows for a large
number of multivariate distribution functions that can be constructed easily.
There is a very useful corollary to Sklar’s theorem, which allows us to represent the copula
by the joint distribution function and the inverses of the marginals. To ensure the existence
of these inverses a new concept of the inverse of a function is required, which is called the
quasi-inverse.

Definition 2.1.5. The quasi-inverse, F (−1) of a distribution function F is defined as

F (−1)(u) = inf{x : F (x) ≥ u} for u ∈ [0, 1] (3)

Corollary 2.1.6 Let H be any bivariate distribution with continuous marginal distributions
F and G. Let F (−1) and G(−1) denote the (quasi-) inverses of the marginal distributions.
Then there exists a unique copula C from I2 to I such that

C(u, v) = H(F (−1)(u), G(−1)(v)),∀(u, v) ∈ I2 (4)

The next result answers the natural question, whether there is an upper and a lower bound
that holds for every copula.

Theorem 2.1.7 (Frèchet-Hoeffding bounds inequality) Let C be a copula. The for
every (u,v) in I2

W (u, v) = max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v) (5)

The upper bound corresponds to perfect positive dependence between two variables, the
lower bound to perfect negative dependence. Additionally consider the function Π(u, v) = uv,
which, not surprisingly, corresponds to independence. In the bivariate case these three
important functions are copulas. For n ≥ 3, however, the function W is not a copula.
Finally, consider the function

Ĉ(u, v) = u + v − 1 + C(1− u, 1− v), (6)

1The general discussion of the theory will be in an i.i.d. setting and we denote random variables by
capital letters, realizations by lower case letters and we add an index t when we speak of a sample.
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which is the copula of a joint survival function. This is known as the survival or rotated
copula.
As copulas are used to model dependencies one must specify of how to measure dependence.
Traditionally the dependence between two random variables is measured by the linear corre-
lation coefficient. However, when the dependence is not described by an elliptical distribution
it can be quite misleading to use linear correlation and it might be more reasonable to use
copula based measures of dependence, which are scale invariant (see Embrechts et al. (2002)
for caveats on using the correlation coefficient for measuring dependence). One of these more
robust copula based measures is Kendall’s tau. It has become the most popular measure of
overall dependence in the literature on copulas and it relies on the concept of concordance.
Consider two pairs of observations (xi, yi) and (xj, yj) from the continuous random variables
(X, Y ). We call these pairs of observations concordant if (xi−xj)(yi−yj) > 0 and discordant
if (xi− xj)(yi− yj) < 0. Hence, two random variables are said to be concordant, when large
values of one random variable are associated with large values of the other, and similarly
small values tend to be associated with each other.
Using the concept of concordance we are now able to introduce a measure of association
known as Kendall’s tau. Its sample version is defined as the fraction of concordant pairs
of observations in the sample minus the fraction of discordant pairs of observations. The
population version of Kendall’s tau is defined as the difference between the probability of
concordance and the probability of discordance.

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] (7)

Kendall’s tau may be represented as a function of the expected value of a copula as follows.

τC = 4E(C(U, V ))− 1 (8)

For some copulas there is a one to one relationship between its parameter and Kendall’s tau.
Another frequently encountered and important dependence concept, which is relevant when
modeling extreme events, is tail dependence. It measures the dependence of the random
variables X and Y in the upper-right-quadrant and lower-left-quadrant. As the measure
discussed above it is a copula property and hence it is invariant under strictly increasing
transformations of the random variables. There are two alternative definition for the coeffi-
cient of upper tail dependence. We first state the probabilistic one, followed by the definition
in terms of copulas.

Definition 2.1.8 Let (X,Y )T be a vector of continuous random variables with marginal
distribution functions F and G. The coefficient of upper tail dependence of (X,Y )T is

lim
u↗1

P [Y > G−1(u)|X > F−1(u)] = λU (9)
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Definition 2.1.9 If a bivariate copula C is such that

lim
u↗1

1− 2u + C(u, u)

1− u
= λU (10)

exists, then C has upper tail dependence if λU ∈ (0, 1], and upper tail independence if λU = 0.

In a similar way the concept of lower tail dependence can be introduced. Only the defi-
nition corresponding to definition 2.1.9 is considered here.

Definition 2.1.10 If a bivariate copula C is such that

lim
u↘0

C(u, u)

u
= λL (11)

exists, then C has lower tail dependence if λL ∈ (0, 1], and lower tail independence if λL = 0.

Alternative formulas for λU and λL exists and can be found in Embrechts et al. (2003).
There it is shown that the coefficient of upper tail dependence for a copula is equal to the
coefficient of lower tail dependence for the corresponding survival copula and the other way
around. We will encounter some illustrations of tail dependence in the next section, where
some families of copulas are introduced.

2.2 Examples and families of copulas

In this section the most commonly used copulas will be described and their properties will
be presented. The presentation is far from complete, but covers the copulas that are con-
sidered in most applications in the literature. For exhaustive lists of copula functions and
various methods for constructing copulas the books by Joe (1997) and Nelson (1999) may
be consulted.

2.2.1 Elliptical copulas

Elliptical copulas are simply the copulas of elliptical distributions. They share a number of
properties of the multivariate normal distribution and they are used to model multivariate
extreme events and non-normal dependencies. As a result of the fact that simulations from
multivariate elliptical distributions are easy to perform, simulations from elliptical copulas
are easy to perform as well. An advantage of using elliptical copulas is that we are now able
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to model multivariate distributions where the marginals are not assumed to be equal (or
even of the same family of distributions), but the dependence between the marginals is still
characterized by an elliptical distribution (of the uniform marginals). A drawback is that
the distribution functions do not have a closed form expression and that elliptical copulas
are restricted to have radial symmetry, i.e. C = Ĉ.
The first copula presented is the (bivariate) Gaussian copula. It can easily be derived from
the bivariate normal distribution and has the following distribution function

CGaussian(u, v) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
− s2 − 2ρst + t2

2(1− ρ2)

)
dsdt

where ρ is the linear correlation coefficient of the corresponding bivariate normal distribution.
Note that it can be shown that the Gaussian copula does not have tail dependence for ρ < 1.2

The expression for Kendall’s tau is given by

τ =
2

π
arcsin(ρ).

Conversely, a non-parametric estimator of ρ is sin(πτ̂
2

), which is efficient and inherits the
robustness properties of Kendall’s tau.
An elliptical copula that exhibits upper and lower tail dependence is the t-copula given by

Ct(u, v) =

∫ t−1(u;ν)

−∞

∫ t−1(v;ν)

−∞

1

2π
√

1− ρ2

(
1 +

s2 + t2 − 2ρst

ν(1− ρ2)

)− ν+2
2

dsdt

Again, ρ denotes the linear correlation coefficient of the corresponding bivariate t-distribution
with ν degrees of freedom. The relationship between Kendall’s tau and ρ is the same as for
the Gaussian copula. The coefficients of upper and lower tail dependence, which are equal,
are given by

λ = 2t̄ν+1

(√
ν + 1

√
1− ρ√

1 + ρ

)
.

Consequently, λ is increasing in ρ and decreasing in ν.

2.2.2 Archimedean copulas

Archimedean copulas form a large family of copulas with a number of convenient properties
and they allow for a large number of dependence structures. Most have closed form expres-
sions, with turns out to be very useful for estimation. They are, unlike many other copulas,

2Note that it is sufficient to show that it does not have upper tail dependence, as lower tail dependence
then follows from the radial symmetry property.
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not constructed from multivariate distributions using Sklar’s theorem. Let ϕ denote the so
called generator function of a copula with the following properties:

1. ϕ(1) = 0
2. ϕ

′
(t) < 0 ∀ t ∈ (0, 1) (i.e. it is decreasing)

3. ϕ
′′
(t) ≥ 0 ∀ t ∈ (0, 1) (i.e. it is convex)

Now let ϕ[−1] denote the pseudo-inverse, which is equal to the normal inverse for t ∈ [0, ϕ(0)]
and is equal to 0 for t ≥ ϕ(0). Then the Archimedean copula is given by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)).

When ϕ(0) = ∞ we say that C is strict and the pseudo inverse is simply the standard
inverse of a function. Archimedean copulas are symmetric, i.e. C(u,v)=C(v,u), and they are
associative, i.e. C(C(u,v),w)=C(u,C(v,w)). A very convenient property is that Kendall’s tau
and the coefficients of tail dependence can be expressed in terms of the generator functions.
These expressions are:

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt

λU = 2− 2 lim
s↘0

ϕ−1′(2s)

ϕ−1′(s)

λL = 2 lim
s→∞

ϕ−1′(2s)

ϕ−1′(s)
.

In the following some examples of Archimedean copulas will be given.
For ϕ(t) = −ln(t) we obtain the product copula Π. Also the Frèchet-Hoeffding bounds are
limiting cases of Archimedean copulas. The most commonly used cases are:

Clayton copula:

ϕ(t) = t−θ−1
θ

, θ ∈ [−1,∞] \ {0}

Its distribution function is:

CClayton
θ (u, v) = max[(u−θ + v−θ − 1)

−1
θ , 0]
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For θ > 0 the Clayton copula is strict and has lower tail dependence. The coefficient of
lower tail dependence is given by λL = 2−1/θ. The expression of Kendall’s tau can be shown
to be τ = θ

θ+2
. Furthermore C−1 = W , limθ→0Cθ = Π and limθ→∞Cθ = M

Gumbel copula:

ϕ(t) = (−ln(t))θ, where θ ≥ 1

CGumbel
θ (u, v) = exp(−[(−ln(u))θ + (−ln(v))θ]1/θ)

τ = 1− 1
θ

The Gumbel copula has upper tail dependence:

λU = 2− 21/θ

Similarly to the case above C1 = Π and limθ→∞Cθ = M .

Frank copula:

ϕ(t) = −ln( e−θt−1
e−θ−1

), where θ 6= 1

CFrank
θ (u, v) = −1

θ
ln(1 + (e−θu−1)(e−θv−1)

e−θ−1
)

τ = 1− 4(1−D1(θ)
θ

, where D is the Debye function

Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt

Frank copulas display the property of radial symmetry and do not have any tail dependence.
In fact the Frank copula was shown to be the only archimedean copulas that has radial
symmetry.

Joe-Clayton copula:

CJC
λU ,λL

= 1− (1− [[1− (1− u)κ]−γ + [1− (1− v)κ]−γ − 1]−1/γ)1/κ

where
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κ = 1
log2(2−λU )

for λU ∈ (0, 1)

γ = −1
log2(λL)

for λL ∈ (0, 1)

When λU = 0 it collapses to the Clayton copula. As one of the coefficients approaches
1 the Joe-Clayton copula approaches the Frèchet-Hoeffding upper bound. The two param-
eters λU and λL measure the coefficient of upper and lower tail dependence respectively.
Equality of the two parameters does not imply symmetry. Patton (2005) introduced a sym-
metrized version of the Joe-Clayton copula, which has this desirable property.

BB1 copula:

CBB1
θ,δ = (1 + ((u−θ − 1)δ + (v−θ − 1)δ)1/δ)−1/θ

When δ is equal to 1 it becomes the Clayton copula. As θ → 0 it becomes the Gumbel
copula. Furthermore, λU = 2− 21/δ and λL = 2−1/δθ.

2.2.3 Further copulas

Plackett copula:

CPlackett
θ (u, v) = 1

2
(θ − 1)[1 + (θ − 1)(u + v)−

√
[(1 + (θ − 1)(u + v))2 − 4θ(θ − 1)uv]]

Additionally, θ ∈ (0,∞) and limθ→1Cθ = Π. The Plackett copula has upper tail depen-
dence as θ goes to infinity and lower tail dependence as θ goes to 0.

Rotated copulas:

The idea of rotating a copula function makes sense only for ones with an asymmetric de-
pendence structure. In this paper we will make use of the rotated Gumbel and the rotated
Clayton copulas. In practical terms, if u and v have e.g. a Gumbel copula, then the variables
1 − u and 1 − v have the rotated Gumbel copula, which instead of upper tail dependence
shows stronger dependency in the lower tail. Rotated copulas are also called survival copulas
of the corresponding family. Note that the survival copula of an Archimedean copula is not
archimedean.
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Additionally to the copula families introduced, one can consider a mixture of two or more
copulas, which is simply the convex combination between the copula functions considered.
This makes it possible to obtain any dependence structure desired.
In figures 1-3 we present scatterplots and contour lines for some of the most popular copulas
with standard normal margin and parameters corresponding to Kendall’s tau equal to 0.5.
The difference in the dependence structure and the asymmetries for the Clayton and Gumbel
copulas are quite easy to see.
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Figure 1: Illustration of the Gumbel and survival Gumbel copula
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Figure 2: Illustration of the Clayton and survival Clayton copula

2.3 Simulation from a copula

A possible application of copula functions is the efficient simulation of an asset return dis-
tribution in a more realistic way or, more generally, simulation from any distribution with
dependent observations. By using the right copula, or even a mixture of two or more cop-
ulas, and the corresponding parameters any dependence structure may be imposed. The
simulated data offers itself to a variety of Monte Carlo methods.

Conditional sampling

The following algorithm is the most general one that can be used to simulate a sample
from any copula. However, the method is not always the most efficient one, so more efficient
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Figure 3: Illustration of the Frank and Plackett copula

ways will be discussed below. Whenever one of the algorithms described below is applicable
it should be used. The marginal series obtained by the algorithm have the uniform (0,1)
distribution, but as a result of Sklar’s theorem can be transformed into any distribution with-
out changing the dependence structure using the method above. The following algorithm is
known as the conditional distribution method. The conditional distribution can be obtained
as follows.

C(v|u) = P [V ≤ v|U = u] =
∂C(u, v)

∂u
(12)

1. Generate two independent uniform (0,1) variates u and t;
2. Set v = C(−1)(t|u), where C(−1) denotes the quasi-inverse of C(v|u).
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3. The pair (u, v) has joint distribution function C.

Note that if the inverse of C cannot be found analytically, it has to be obtained using
numerical root finding. Unfortunately, this makes the algorithm particularly slow.

Simulation from elliptical copulas

Let Ω denote the covariance matrix, which is positive definite, and let A be defined such

that Ω = AAT . Then if Z = Z1, ..., Zm
i.i.d.∼ N(0, 1) it follows that

µ + AZ ∼ Nm(µ, Ω).

This can be used to efficiently simulate random variates from a Gaussian copula using the
Cholesky decomposition to impose the dependence on the independent random variables.

1. Find the Cholesky decomposition A of Ω.
2. Simulate 2 independent standard normal random variates z1 and z2.
3. Set x = Az.
4. Set u = φ(x1) and v = φ(x2), where φ
denotes the univariate standard normal cdf.
5. The pair (u,v) has the Gaussian copula as its distribution function.

In order to simulate a t-copula we use the relationship that if S has a chi-square distri-
bution and Z is the same as above, then

X =d µ +

√
ν√
S

Z

has the multivariate t-distribution with ν degrees of freedom. The first three steps of the
algorithm are the same as for the Gaussian copula. The remaining steps are:

4. Simulate a random variate s from X 2
ν independent of z1 and z2.

5. Set y=
√

ν√
s
x.

6. Set u = tν(y1) and v = tν(y2).
7. The pair (u,v) has the t-copula as its distribution function.

Simulation from Archimedean copulas

The following results provide a basis for efficiently simulating Archimedean copulas. These
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results also find their application for testing the goodness-of-fit of copulas.

Theorem 2.3.1 Let C be an Archimedean copula generated by ϕ and let

KC(t) = VC({(u, v) ∈ [0, 1]2|C(u, v) ≤ t}).

Then for any t in [0,1],

KC(t) = t− ϕ(t)

ϕ′(t+)
. (13)

Corollary 2.3.2 If (U, V )T has distribution function C, where C is an Archimedean copula
generated by ϕ, then the function KC is the distribution function of the random variable
C(U,V).

The theorem below allows for a direct implementation of the algorithm for simulating the
copulas.

Theorem 2.3.3 Under the hypotheses of Corollary 2.3.2, the joint distribution function
H(s,t) if the random variables S =ϕ(U)/[ϕ(U)+ϕ(V )] and T=C(U,V) is given by H(s,t)=sKC(t)
for all (s,t) in [0, 1]2. Hence S and T are independent, and S is uniformly distributed on [0,1].

Now we are ready to present the algorithm:

1. Simulate two independent U(0,1) random variates s and q.
2. Set t = K−1

C (q), where KC is the distribution function of C(U,V).
3. Set u = ϕ[−1](sϕ(t)) and v = ϕ[−1]((1− s)ϕ(t)).
4. The desired pair is (u,v).

3 Estimation and model selection

When modeling the joint density of two random variables using copula functions, care needs
to be taken as to how to correctly and efficiently estimate the parameters and how to discrim-
inate between competing models. A number of methods exist for the estimation of copula
functions and have been described in the literature. However, when it is best to use one of
the methods is not always an easy issue. Tests of correct model specification of the marginals
and the copula exist and some alternatives have been developed recently.
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3.1 Estimation

There exist five methods of estimating copula models. The one step method or exact maxi-
mum likelihood (EML) method estimates all parameters of the model at the same time. The
second method is the two step estimator or the method of inference functions for margins
(IFM), which first estimates the parameters of the marginals and with these parameters given
estimates the copula function. The canonical maximum likelihood method (CML), or the
semiparametric estimation, leave the marginal densities unspecified and uses the empirical
probability integral transform in order to obtain the uniform marginals needed to estimate the
copula parameters. The last two methods are nonparametric ways of estimating the copula.
The first one is estimating the empirical copula directly from the data, leaving the whole
specification nonparametric. The other is obtaining a nonparametric estimate for Kendall’s
tau and using the relationship between Kendall’s tau and the copula parameter to get an
estimate of the latter. This method is due to Genest and Rivest (1993) and is mainly suited
for Archimedean copulas.

Exact maximum likelihood (EML)

Let θ ∈ Θ be the parameter vector to be estimated. This parameter vector can be split
up into the parameters for the marginals and the copula function as follows θ = [ϕ

′
, γ

′
, δ

′
]
′
.

ϕ ∈ φ denotes the parameter(s) of f(x), γ ∈ Γ denotes the parameter(s) of g(y), and
δ ∈ ∆ denotes the parameter(s) of c(F (x), G(y)). Assume we observe a sample xt and yt for
t = 1, ..., T . Consider the following representation of the joint density known as the copula
decomposition of a joint distribution and the resulting log-likelihood function.

h(xt, yt; θ) = f(xt; ϕ) · g(yt; γ) · c(F (xt; ϕ), G(yt; γ); δ)

LXY =
T∑

t=1

ln(f(xt; ϕ)) +
T∑

t=1

ln(g(yt; γ)) +
T∑

t=1

ln(c(F (xt; ϕ), G(yt; γ); δ))

= LX(ϕ) + LY (γ) + LC(ϕ, γ, δ)

The ML estimator is then given by:

θ̂ = arg maxLXY

This estimator is fully efficient as it attains the minimum asymptotic variance bound when
the amount of data available for the two series is equal. However, it may be computationally
difficult to obtain these estimates. Standard errors can be obtained in the usual way by the
inverse of the Fisher information matrix.
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The parametric two-step estimator (IFM)

This estimator makes use of the neat form of the copula decomposition of a joint distri-
bution. In the first step the parameters ϕ and γ of the marginal densities are estimated by
MLE, i.e.

ϕ̂ = arg maxLX

γ̂ = arg maxLY .

Using these estimates to transform the marginals into uniform (0,1) variables one can now
estimate we can now estimate the copula parameter(s) δ by maximizing the copula density,
i.e.

δ̂ = arg maxLC(ϕ̂, γ̂, δ).

Joe and Xu (1996) showed that this estimator is consistent and asymptotically normal.
The asymptotic covariance matrix of T 1/2(θ̂− θ) is called the Godambe information matrix.
If we denote the vector of score functions of our model by ψθ(X, Y ) then it is given by
V = D−1M(D−1)′, where D = E[∂ψθ(X,Y )/∂θ] and M = E[ψθ(X, Y )ψθ(X,Y )′]. Note that
this is just the standard covariance matrix for Z-estimators, see e.g. van der Vaart (1998).
Joe and Xu (1996) suggest using the Jackknife method as an estimator for the covariance
matrix and show its validity. If we denote the estimate of θ with the t’th row deleted from
the data by θ(t), then the Jackknife estimator of T−1V is

T∑
t

(θ̂(t) − θ̂)(θ̂(t) − θ̂)′.

In case the sample is large one may delete the data block wise and the approach remains
valid.
The IFM approach has the advantage of being computationally less demanding than the
EML approach. Furthermore, estimating the margins in a first step allows to assess the
goodness of fit of the margins separately from that of the copula. Another advantage of this
estimator is that it allows the two series xt and yt to be of unequal length. W.l.g. assume
that the amount of data available for X, Tx, is greater than the amount of data available
for Y , Ty. Then the additional information on the random variable X can be used to find
a better estimate of ϕ, which may lead to a better performance of the two-step estimator.
Whether the use of this additional information offsets the loss of efficiency compared to the
one-step estimator depends on the ratios Ty

Tx
≡ λy and Tc

Tx
≡ λc, where Tc is the number of

observations available for the estimation of the copula, 0 < λy < 1 and 0 < λc < 1.
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Patton (2006b) proposes a one-step adjustment of this estimator, that theoretically makes it
fully efficient. However, in a Monte Carlo study the small sample properties of this adjusted
estimator are shown to be rather poor. In contrast, the unadjusted estimator outperforms
the EML estimator in the setup chosen.

The semi parametric two-step estimator (CML)

When the density of the marginal distributions are unknown this estimator gives the pos-
sibility of leaving them unspecified. Bad estimation results due to miss specification of the
marginals can be avoided. In the first step the series of interest are transformed into uni-
form variates using the empirical probability integral transform. The empirical distribution
function is defined as

F̂ (·) =
1

T

T∑
t=1

1{Xt≤·}, (14)

where 1{Xt≤·} is the indicator function. The copula parameter δ can the be estimated by
maximizing the log-likelihood function of the copula density using the transformed variables
given by

LC(δ) =
T∑

t=1

ln(c(F̂ (xt), Ĝ(yt))) =
T∑

t=1

ln(c(ût, v̂t). (15)

The semi parametric estimator then is

δ̂ = arg maxLC(δ).

Consistency and asymptotic normality of the CML estimator were shown by Genest et al.
(1995) for the i.i.d. case and by Chen and Fan (2006) for estimating copula based time
series models. Chen and Fan (2005) showed that this estimator also converges to the pseudo
true parameter in case the copula is misspecified (which in most practical situations is very
likely), so that the estimated model is closest to the data generating process in terms of the
Kullback-Leibler divergence.
Estimators for the covariance matrix are described by the authors for the various cases. For
a clear step by step procedure for the i.i.d. case we refer to Genest and Favre (2005).
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The nonparametric estimator

Unlike the methods described above this method does not rely on any parametric speci-
fication of the copula function. The empirical copula is the function Cn given by

Cn(
i

T
,
j

T
) =

number of pairs (xt, yt) in the sample such that xt ≤ xi and yt ≤ yj

T
,

for i, j = 1, ..., T . The empirical copula can be used to calculate population versions of the
concordance measure described above. For more details on that see Nelson (1999). Addi-
tionally, they find their use in nonparametric tests for independence and for goodness of
fit test of the copula specification. Note that Fermanian and Scaillet (2003) also propose a
kernel estimator for copulas.

The nonparametric estimator by Genest and Rivest

An advantage of this approach is that the marginal distributions do not need to be speci-
fied. If we let c denote the number of concordant pairs in the sample and d the number of
discordant pairs in the sample, then the sample version of Kendall’s tau is given by

τ̂ =
c− d

c + d
. (16)

Using this estimate and the relationship between the copula parameter and Kendall’s tau the
nonparametric estimate can be obtained easily if a closed form expression for this relationship
exists. In case a closed form expression does not exists one can still estimate the copula
parameter by using the general form of Kendall’s tau for Archimedean copulas. This takes
the form

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt

and might be solved using a computer program like Mathematica or Maple. An obvious
drawback of this estimator is that it only applies to the limited number of one parameter
models. When it is available one may compare the parameter estimate of the copula model
to the estimate obtained by a MLE for a first check of its goodness-of-fit. When the two
estimates are close to each other one has an indication of a reasonable fit.

3.2 Model selection

Once one or more estimates of a certain copula have been obtained a very important issue is
how to compare the competing models. The first thing to be done is to assess the goodness-
of-fit of the marginal distribution. Both the i.i.d.’ness and the correct specification of the
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distribution need to be tested. For testing the i.i.d.’ness we refer to Diebold, et al.(1997)
who proposed a simple procedure for this task. The specification of the distribution can be
tested by testing the transformed series for uniformity. This can be done by using the well
known Kolmogorov-Smirnov test or a Chi-square test.
A huge number of tests have been proposed for testing the copula specification. Examples
are Chen et al. (2004), Chen and Fan (2005), Genest et al. (2006) and Fermanian (2003).
However, none of these tests has proven to be superior and quite some research remains to be
done in this field. Besides the numerous goodness-of-fit tests there are a few model selection
criteria, which allow to rank the copulas according to their fit in some way. The most widely
used criterium is the Akaike information criterion. It is defined as

AIC = 2(negative log-likelihood) + 2k

where k is the number of parameters in the model. The model with the lowest AIC should
be considered as the best fitting one.

Graphical methods

The first step we propose in the model selection process is a visual inspection of the scatter-
plot of the data. Some dependence structures may already be identified such as dependence
in one of the tails. However, there are more formal ways of assessing the goodness-of-fit of
your model by visual means. Consider the conditional distribution function(d.f.) of Y given
X. It is given by

HY |X(x, y) = C1(F (x), G(y))

where C1(u, v) = ∂
∂u

C(u, v). The conditional d.f. is U(0, 1) distributed, if the joint density
is well specified. Therefore a QQ-plot of the conditional d.f. using the estimated parameter
and the observed data x and y against uniform quantiles should yield a straight line.
A similar method makes use of Theorem 2.3.1 and Corollary 2.3.2, which state that the
distribution function of the copula can be represented in the following way:

KC(t) = P [C(U, V ) ≤ t] = t− ϕ(t)

ϕ′(t+)

Therefore KC(C(F (X), G(Y )) should be uniformly distributed, so in a similar fashion as
above the QQ-Plot can be constructed and can be compared to a straight line.
A third method, which was proposed by Genest and Rivest(1993), relies on two estimates for
the distribution function of the copula KC . One is a parametric estimate obtained by MLE,
the other is the empirical copula, which is determined by the method described in section
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3.1. A QQ-Plot of these two distribution function should help determine the best fitting
copula. For a good exposition of this method, possible drawback, and some applications the
reader is referred to Matteis (2001). Note that again we can also look at the histogram of the
d.f. of interest and compare it to the histogram of a U(0, 1) variate. The histogram should
be close to a horizontal line under a good specification.

Tests based on the graphical methods

The idea that both the conditional d.f. and the d.f. of the copula should follow a U(0, 1)
distribution under a correct specification of the copula can also be used to conduct formal
tests. Matteis (2001) (among others) proposes to apply the Kolmogorov-Smirnov (K-S) test
and the Chi-square test to check the null hypothesis of a U(0, 1) distribution.3 We suggest
additionally using the Jarque-Bera test after transforming the data through the inverse CDF
of the normal distribution.
As mentioned above there are many more tests available for testing the goodness-of-fit of
the copula specification. However, we postpone a systematic comparison.

4 Simulation study

So far the different estimators and some simple model selection tests for copula functions
have been introduced. However, small sample performance of both the different estimators
and the testing procedures are not always obvious. In order have a better idea on how to
properly model data using copulas Monte Carlo experiments will be performed. The setup
of the simulations are supposed to resemble decisions that have to be made by a researcher
working on practical issues. This could include issues like which estimation technique to use,
which copula functions to consider to describe certain dependence structures, small sample
power of a certain test, behavior of competing tests under misspecification, etc. In the copula
literature Monte Carlo studies are frequently performed, but often attention is only paid to
testing the power of a certain test under a very limited number of data generating processes,
as a general setting is not always possible. A problem is that most competing copula models
are non-nested. Therefore, a lot of questions remain open and it is easy to set up interesting
studies. Here we will consider two different simulation studies. In the first the properties of
the different estimation techniques are compared, both when the density of the marginals
is known and when it is misspecified. In the second an attempt is made to compare the
methods for model selection for competing copula models we presented above.

3For the third method he uses only the K-S test, as it must be checked whether two distributions are
equal.
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4.1 Comparison of the estimators

In this section we want to take a closer look at the properties of the estimator that have
been suggested in the literature. Theoretically their properties have been well studied and
we expect to confirm the theoretical findings. We consider the following estimators: EML,
IFM, CML and the nonparametric estimator based on Kendall’s tau, which we shall call
method of moments (MM) here. The data generating process is a rather simple one. Data is
simulated from a Clayton copula with its parameter corresponding to Kendall’s tau equal to
0.2, 0.4, 0.6 and 0.8. As marginal distributions we took t-distributions with 5 and 6 degrees
of freedom for the X and Y series, respectively. Formally, we have

(u, v) ∼ CClayton
δ

X = t−1(u; 5)

Y = t−1(v; 6).

The sample sizes we look at are 100, 250, 500 and 1000 observations. All simulations will be
replicated 1000 times. We only focus on the estimation of the copula parameter, although
one has to keep in mind that for the EML and IFM estimators additionally the degrees of
freedom parameter needs to be estimated. We use these two estimator both in the situation
when the marginals are known to follow a t-distribution and when they are wrongly speci-
fied, which is a situation that is highly relevant in practice. In particular, normal marginals
are estimated in the misspecified case. For the CML and the MM estimators, of course, the
marginals remain unspecified. Theoretically the EML estimator is the most efficient one, fol-
lowed by the IFM estimator and the CML estimator, but it remains to be seen whether this
also holds in our simulation setup and how large the gain in efficiency is. Another interesting
issue is how the CML and MM estimators compare to the misspecified estimators, because
it can provide a guideline as to which estimator to use whenever one is not sure about the
specification of the marginal distributions.
Table 1 reports the Mean Square Errors (MSE) of the estimates for Kendall’s tau corre-
sponding to the estimated copula parameter and its true value. We decided to compute the
MSE for Kendall’s tau and not for the copula parameter itself, because that allows compar-
ison of the efficiency over different degrees of dependence. Overall the EML estimator is in
fact superior to the others, but for weak dependence structures the IFM method is actually
better and the difference between the two is rather small. For correctly specified models the
MM estimator is the worst. The CML estimator is, as expected, not as efficient as the fully
parametric methods. Only for tau equal to 0.2 and T less than 1000 does it outperform the
EML method. When the marginals are misspecified the IFM estimator is clearly superior to
the EML estimator. However, it is almost always worse than the semi-parametric estimator.
Thus, whenever one fears that the marginals are misspecified we recommend using the CML
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Table 1: Mean Square Errors for different estimators

T=100 τ 1 step 2 step semi para MM 1step MS 2Step MS
0.2 0.0369 0.003 0.0038 0.0044 0.0223 0.0043
0.4 0.0022 0.0023 0.0031 0.0039 0.0039 0.0035
0.6 0.001 0.0013 0.0018 0.0023 0.0021 0.0019
0.8 0.0003 0.0009 0.0008 0.0008 0.0007 0.0016

T=250
0.2 0.0056 0.0012 0.0014 0.0017 0.0141 0.0022
0.4 0.0008 0.0008 0.0011 0.0014 0.0014 0.0013
0.6 0.0004 0.0005 0.0007 0.0008 0.001 0.0007
0.8 0.0001 0.0003 0.0003 0.0003 0.0002 0.0005

T=500
0.2 0.0009 0.0006 0.0007 0.0008 0.0065 0.0016
0.4 0.0004 0.0004 0.0006 0.0007 0.0008 0.0007
0.6 0.0002 0.0002 0.0003 0.0004 0.0006 0.0004
0.8 0.0001 0.0001 0.0001 0.0001 0.0004 0.0003

T=1000
0.2 0.0003 0.0003 0.0003 0.0004 0.0031 0.0012
0.4 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004
0.6 0.0001 0.0001 0.0002 0.0002 0.0004 0.0002
0.8 0.00002 0.00004 0.0001 0.0001 0.0011 0.0005

Note: The table reports the MSE from the implied Kendall’s tau to the true one. Data is generated from
a Clayton copula with Student t margins. EML MS and IFM MS refer to the estimator when the margins
are assumed to be normally distributed.

method. In case a fully parametric estimate is needed (e.g. because the behavior of some
test statistic is not known for a semi-parametric estimator) we recommend using the IFM
estimator. Note that as the sample size and the degree of dependence increase the MSE’s
greatly decrease.

4.2 Model selection

A typical problem that arises when fitting copulas to data is how to decide for the best fitting
model. A large number of methods has been proposed for that end. Here we compare the ones
we proposed earlier, namely the AIC and three tests for checking whether the conditional
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Table 2: Model selection by AIC when the true model is the Gumbel copula

T=100 τ Gumbel rot. Gumbel Clayton rot. Clayton Frank Plackett Normal
0.2 0.333 0.037 0.015 0.373 0.053 0.077 0.112
0.4 0.588 0.009 0 0.227 0.023 0.044 0.109
0.6 0.806 0 0 0.09 0.019 0.019 0.066

T=250
0.2 0.54 0.008 0 0.277 0.031 0.056 0.088
0.4 0.844 0 0 0.113 0.004 0.008 0.031
0.6 0.978 0 0 0.016 0 0 0.006

T=500
0.2 0.731 0 0 0.205 0.013 0.012 0.039
0.4 0.95 0 0 0.046 0 0.001 0.003
0.6 0.998 0 0 0.001 0 0 0.001

T=1000
0.2 0.856 0.001 0 0.125 0.001 0.002 0.015
0.4 0.99 0 0 0.01 0 0 0
0.6 1 0 0 0 0 0 0

copula is distributed uniformly, which are the K-S test, the Chi-square4 test and the Jarque-
Bera test. In our first simulation we sample data from three different copulas, the Gumbel,
Clayton and Frank copulas with U(0, 1) marginals and parameters corresponding to Kendall’s
tau equal to 0.2, 0.4 and 0.6 and sample sizes of 100, 250, 500 and 1000 observations. Then
we estimate the following copulas: Gumbel, survival Gumbel, Clayton, survival Clayton,
Frank, Plackett and Normal copula, which are the most popular one-parameter copulas in
the literature.5 Tables 2-4 report the fraction of times each candidate model is chosen when
using a selection rule the always decides for the model with the smallest AIC. This model
selection procedure becomes more powerful with stronger dependence and larger samples
sizes. In most of the cases when the true model is not selected the model with the lowest
AIC is one with similar dependence structure. For example both the Gumbel and the rotated
Clayton copula are characterized by upper tail dependence and one can see that when the
data is generated from a Gumbel copula the rotated Clayton copula is selected quite often.
Altogether one can say that the AIC is a good criterion for finding the best fitting copula.
However, for weak dependence its performance is not entirely satisfactory. The good news
is that when it does not find the correct model it will usually chose one that is close to it.

4For the Chi-square test we use 15, 20, 30 and 50 classes for 100, 250, 500 and 1000 observations,
respectively.

5Again we use 1000 replications for the Monte Carlo simulations.
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Table 3: Model selection by AIC when the true model is the Clayton copula

T=100 τ Gumbel rot. Gumbel Clayton rot. Clayton Frank Plackett Normal
0.2 0.01 0.192 0.647 0.001 0.041 0.033 0.076
0.4 0 0.153 0.829 0 0.01 0.001 0.007
0.6 0 0.07 0.93 0 0 0 0

T=250
0.2 0.001 0.205 0.735 0 0.019 0.013 0.027
0.4 0 0.085 0.915 0 0 0 0
0.6 0 0.008 0.992 0 0 0 0

T=500
0.2 0 0.185 0.808 0 0 0.002 0.005
0.4 0 0.021 0.979 0 0 0 0
0.6 0 0.002 0.998 0 0 0 0

T=1000
0.2 0 0.092 0.908 0 0 0 0
0.4 0 0.002 0.998 0 0 0 0
0.6 0 0 1 0 0 0 0

Table 4: Model selection by AIC when the true model is the Frank copula

T=100 τ Gumbel rot. Gumbel Clayton rot. Clayton Frank Plackett Normal
0.2 0.067 0.086 0.085 0.077 0.319 0.188 0.178
0.4 0.038 0.04 0.015 0.009 0.567 0.204 0.127
0.6 0.013 0.01 0 0.002 0.817 0.106 0.052

T=250
0.2 0.044 0.031 0.029 0.031 0.433 0.261 0.171
0.4 0.008 0.003 0 0 0.756 0.151 0.082
0.6 0 0.001 0 0 0.949 0.043 0.007

T=500
0.2 0.005 0.015 0.003 0.003 0.526 0.32 0.128
0.4 0 0.002 0 0 0.843 0.135 0.02
0.6 0 0 0 0 0.99 0.009 0.001

T=1000
0.2 0.001 0.002 0.001 0 0.612 0.32 0.064
0.4 0 0 0 0 0.946 0.053 0.001
0.6 0 0 0 0 1 0 0
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In order to get an idea about the size and the power under different alternatives of the three
goodness-of-fit tests we consider the problem of testing whether data has been generated
by a Gaussian copula. To this end we draw random observations from the Gaussian copula
in order check the size of the tests and from two alternatives, namely the t-copula with 4
degrees of freedom and the Clayton copula. The t-copula is chosen to see the behavior of
the test when the alternative as also symmetric, but has fatter tails than then null. The
Clayton copula, on the other hand, has an asymmetric dependence structure and we expect
the tests to have higher power against this alternative.
In tables 5-7 the rejection frequencies at a level of 5% for the three mentioned tests are
given. First note that all 3 tests have a higher power against the Clayton copula as the
alternative, than against the t-copula. In terms of size the K-S test performs quite well. It
seems to be slightly undersized. Its power, however, is only acceptable for strong dependence
structures and large samples. The Chi-square test is clearly oversized, but its power a lot
higher than for the K-S test. Finally, the Jarque-Bera test has both good size properties
and it is superior to the other two tests in terms of power. Thus the Jarque-Bera test is
the most recommendable test of the three. This may be due to the fact that is able to
detect skewness and excess kurtosis, which in terms of copulas means it is able to detect if
a model insufficiently captures asymmetric dependence or fat tails. Still one can see that
the performance of the tests is not acceptable for weak dependence structures even when
the sample is large. Thus we conclude that these tests are not very useful in small samples
and for weak dependence. They are powerful only in situations when model selection using
the AIC works extremely well. The K-S test is the weakest of the three and it should be
interpreted with care. The Chi-square and especially the Jarque-Bera test can be useful for
complementing model selection by the AIC. Furthermore, formal testing is necessary, since
one cannot be sure that the true model is among the ones selected for estimation. Thus,
even when a model clearly outperforms its competitors in terms of AIC none of the copulas
estimated may have a satisfactory fit.
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Table 5: Rejection frequencies for the KS-test

T=100 Normal Student Clayton T=250 Normal Student Clayton
τ = 0.2 0.053 0.036 0.05 0.049 0.052 0.057
τ = 0.4 0.056 0.053 0.096 0.04 0.056 0.15
τ = 0.6 0.041 0.054 0.184 0.031 0.088 0.458
T=500 T=1000
τ = 0.2 0.034 0.051 0.068 0.06 0.057 0.108
τ = 0.4 0.038 0.07 0.35 0.053 0.1 0.567
τ = 0.6 0.043 0.182 0.804 0.051 0.41 0.999

Note: Data is generated from a Gaussian copula, a t-copula with 4 degrees of freedom and a Clayton copula
with U(0, 1) margins. The table reports the frequency of rejection of tests of uniformity of the conditional
gaussian copula CGaussian(u|v).

Table 6: Rejection frequencies for the Chi-square test

T=100 Normal Student Clayton T=250 Normal Student Clayton
τ = 0.2 0.1 0.091 0.093 0.073 0.1 0.106
τ = 0.4 0.079 0.084 0.162 0.077 0.099 0.301
τ = 0.6 0.058 0.108 0.354 0.078 0.139 0.74
T=500 T=1000
τ = 0.2 0.083 0.076 0.117 0.077 0.069 0.139
τ = 0.4 0.071 0.105 0.517 0.065 0.135 0.772
τ = 0.6 0.076 0.237 0.959 0.081 0.414 1

Note: Data is generated from a Gaussian copula, a t-copula with 4 degrees of freedom and a Clayton copula
with U(0, 1) margins. The table reports the frequency of rejection of tests of uniformity of the conditional
gaussian copula CGaussian(u|v).

27



Table 7: Rejection frequencies for the JB-test

T=100 Normal Student Clayton T=250 Normal Student Clayton
τ = 0.2 0.061 0.08 0.083 0.053 0.149 0.122
τ = 0.4 0.05 0.301 0.344 0.048 0.495 0.65
τ = 0.6 0.055 0.496 0.706 0.054 0.796 0.965
T=500 T=1000
τ = 0.2 0.059 0.166 0.236 0.057 0.257 0.439
τ = 0.4 0.053 0.725 0.928 0.056 0.936 0.998
τ = 0.6 0.044 0.954 1 0.05 0.993 1

Note: Data is generated from a Gaussian copula, a t-copula with 4 degrees of freedom and a Clayton copula
with U(0, 1) margins. The table reports the frequency of rejection of tests of uniformity of the conditional
gaussian copula CGaussian(u|v).

5 Modeling exchange rate dependence

Now that we have introduced copula functions, the different ways of estimating them for a
given data set and some model specification tests, including an analysis of their finite sam-
ple properties, we are ready to present their use in practice. We use copulas to model the
dependence between pairs of Latin American exchange rates against the Euro. In particular
we consider daily exchange rate returns from 01/01/2001 until 30/11/2006, which amounts
to 1485 observations for each series, for the following countries: Brazil, Chile, Columbia,
Mexico and Peru.6

All the results on estimation and model selection require i.i.d. U(0, 1) observations. This
requires a first estimation step to filter out mean dynamics and heteroscedasticity. Autocor-
relation or an incorrect specification of the marginal distribution can influence the estimation
of the copula parameters. The first step in modeling the data is to model the marginal dis-
tribution of each series individually in order to transform them into i.i.d. U(0, 1) series. To
this end we start by fitting ARMA models to each series and then fitting GARCH models to
their residuals. The mean dynamics where captured well by only an intercept for all series
except Mexico. In that case a simple AR(1) model provided a good fit for the data. The best
fit for the conditional variance was a t-GARCH(1,1) for all series. The standardized resid-
uals where fit to a Student t-distribution using maximum likelihood estimation (MLE) and
transformed into U(0, 1) variables using the CDF of the t-distribution and the estimated

6The data have been taken from the internet page of the PACIFIC Exchange Rate Service provided by
the University of British Columbia (http://fx.sauder.ubc.ca/data.html).
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degrees of freedom parameter. The uniformity is tested using the tests also proposed for
the goodness-of-fit tests for copulas, the K-S test, the Chi-square test and the Jarque-Bera
test. Non of the series passed all three tests, so the uniformity assumption is questionable.
Therefore we modeled the standardized residuals with the skewed t-distribution introduced
by Hansen (1994). The p-values of the goodness-of-fit a given in table 8.7 All series fit
the skewed t-distribution quite well so we can continue working with the transformed series.
Note that the skewness parameters were quite small (below 0.1 in absolute values) for all
series.
The second step is actually estimating a number of copulas and deciding which is the best

Table 8: Goodness-of-fit tests for marginal distributions

Bra Chi Col Mex Peru
KS 0.6361 0.5455 0.8814 0.5246 0.5465

Chi2 0.2486 0.5941 0.3247 0.8275 0.0829
JB 0.9044 0.8643 0.9424 0.979 0.9237

Note: The series have been fit to a skewed t-distribution and were transformed by the skewed t CDF.

fitting one. The estimation is done using the IFM method, since we have already modeled
the marginals and we found that IFM estimator behaves quite well compared to the one
step estimator. An argument for using the EML technique is that it is easier to get the
standard errors, but we are not interested in testing any hypothesis about the parameters.
We also estimated all the models with the semi-parametric estimator, but the results were
very close to the fully parametric approach, so we report only the outcomes for the latter
estimator. To get an idea of the degree of dependence between the series we the Kendall’s
tau matrix is given in table 9. It ranges from 0.36 for the pair Brazil-Columbia until 0.57 for
Peru-Mexico. The copulas we estimate are the following: Gumbel, survival Gumbel, Clayton,
survival Clayton, Frank, Plackett, Normal, Student, Joe-Clayton(JC), symmetrized JC, BB1,
mixture Clayton-Gumbel, mixture Clayton-Frank, mixture Gumbel-Frank, mixture Gumbel-
survival Gumbel, mixture Clayton-survival Clayton and mixture JC-Frank. All copulas are
estimated and the models were ranked according to the AIC. Then the Jarque-Bera test on
the conditional copula is performed (after transforming the series with the inverse Gaussian
CDF as before). The test was performed both for the conditional copula U given V and
V given U, so the derivative of the copula distribution function with respect to each of its
arguments. The highest ranked model that passed the Jarque-Bera test in both directions is

7Note that we used 55 classes for the Chi2 test.
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Table 9: Kendall’s tau matrix between the GARCH residuals

bra chi col mex peru
bra 1 0.4513 0.3602 0.4346 0.3649
chi 0.4513 1 0.4299 0.5129 0.4727
col 0.3602 0.4299 1 0.5018 0.5721

mex 0.4346 0.5129 0.5018 1 0.5785
peru 0.3649 0.4727 0.5721 0.5785 1

considered the best fitting one. In some cases, however, models were very close to each other
in terms of the AIC, so deciding for the best fitting one is a rather hard task. More refined
model selection techniques may be necessary in this case. In such situations we simply report
more than one model. Overall there are three dominant copulas, the Student copula, the
Joe-Clayton-Frank mixture and the mixture Gumbel-survival Gumbel. Furthermore, it is
apparent that all pairs of exchange rates exhibit tail dependence in both tails. Models that
do not allow for dependence in both tails are not among the best fitting ones. We make the
same observation as Junker et al. (2005) that a one parameter copula is not able to provide
a reasonable fit for financial data.
For the pairs Brazil-Chile, Brazil-Columbia and Brazil-Mexico we observe an asymmetric de-
pendence structure with more upper tail dependence than lower tail dependence. This means
that when these currencies depreciate against the Euro they tend to be more dependent that
when they appreciate. However, for the pair Brazil-Mexico the evidence is not that strong
and dependence may actually be symmetric. The pairs Chile-Columbia, Columbia-Peru also
have an asymmetric dependence structure, but they have more lower tail dependence than
upper tail dependence. For the rest of the pair we can conclude that dependence is rather
symmetric. Only for the pair Columbia-Mexico is there some evidence for excess upper
tail dependence. Our findings are in line with the findings of Patton (2006a,b) who finds
asymmetric dependence for the Euro/German Mark and the Yen against the dollar. Note
that just as found in Patton (2006a) exchange rate dependence may be varying over time
and should therefore be modeled using conditional copula models. We leave this for future
research.
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Table 10: Estimation results

Countries Model δ1 δ2 α λU λL AIC
bra-chi

JC-Frank 1.6609; 0.5369 6.2095 0.5173 0.2494 0.1423 -787.169
Student 0.6411 12.1674 - 0.1132 0.1132 -782.364

bra-col
Gumbel- rot. Gumbel 1.5091 1.655 0.6843 0.2854 0.1515 -497.262

Clayton-Gumbel 1.3378 1.5201 0.2182 0.3301 0.1299 -495.439
Gumbel-Frank 1.4721 4.6115 0.6315 0.2518 0 -495.059

bra-mex
JC-Frank 1.6302; 0.5742 5.4081 0.4498 0.2115 0.1345 -718.688

Student 0.6214 10.1643 - 0.1343 0.1343 -716.062
bra-peru

Student 0.5344 7.5576 - 0.1433 0.1433 -502.37
Gumbel- rot. Gumbel 1.4132 1.8116 0.5623 0.2063 0.2337 -499.56

chi-col
Gumbel- rot. Gumbel 1.4722 2.1164 0.4516 0.18 0.3359 -758.907

chi-mex
Student 0.719 14.1568 - 0.1361 0.1361 -1080.69

chi-peru
Student 0.6763 5.1767 - 0.3156 0.3156 -943.031

col-mex
JC-Frank 1.9722; 1.2787 5.4311 0.4904 0.2839 0.2852 -1002.99

Gumbel- rot. Gumbel 1.8917 2.102 0.5009 0.2793 0.3041 -1002.41
Clayton-Gumbel 2.4352 1.9038 0.3166 0.3832 0.2382 -999.295

col-peru
Gumbel- rot. Gumbel 1.6847 3.1345 0.3706 0.182 0.4736 -1439.48

mex-peru
Student 0.781 12.9949 - 0.2107 0.2107 -1392.82

Note: Estimation results for the best fitting copula models obtained by the IFM method for standardized
GARCH residuals. In case of mixtures δ1 is the estimate of the first model (two parameters in the JC-Frank
copula), δ2 is the estimate of the second model and α is the mixing parameter.

6 Conclusion

In this paper we introduced copula functions in a formal mathematical manner. We estab-
lished some important links between copulas and some common measures of dependence,
after presenting the relevant dependence concepts, in order to enable the reader to interpret
these measures in a correct way. The introduction of the most commonly used examples and
families of copulas, together with the different estimators and some goodness-of-fit tests,
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gave us all the tools necessary to model a data set. However, the theory is not able to give
any guidelines as to which copula functions to consider, which estimator to use or how to
discriminate between competing models. Providing some guidelines to these issues turned
out to be the main point of this work. With the help of Monte Carlo simulations we can
recommend the use of the CML estimator whenever a fully parametric model is not needed
and when one runs the danger of working with misspecified marginal distributions. When
one is confident about the marginal distributions chosen, however, the IFM estimator is su-
perior to the CML method in terms of mean-square-errors and it is extremely close to the
EML estimator in terms of efficiency. We also gained some insight into the performance of
different model selection criteria. The Akaike information criterion should be considered first
when looking for the copula that most likely can capture the true dependence present in the
data. The tests based on the conditional distribution function performed reasonable only
for large samples and strong dependence. All three tests considered perform well in terms
of size, but only the Jarque-Bera test, which had not been suggested in the literature for
testing copula models until now, showed sufficient power to be recommended for empirical
applications.
We used the techniques introduced to model the joint distribution of Latin American ex-
change rate returns against the Euro by fitting a copula to the standardized residuals of an
ARMA-GARCH model. We found evidence of asymmetric dependence, both excess upper
and lower tail dependence, as well as symmetric joint movements in the data analyzed.
We can conclude that copula models are, and will be, a very useful tool in econometrics
for simulation, density forecasting and for analyzing nonlinear dependence. The simulation
algorithms offer themselves as a tool for realistically simulating asset returns, which may be
used for pricing exotic options or credit risk derivatives by simulation methods. The ability
of copulas to model the complete joint distribution of a variable of interest turns out to be
useful when analyzing risk for a set of variables. A classical example is the Value-at-Risk of a
portfolio using copula based dependence measure instead of Pearson’s correlation coefficient.
More copula based models in finance and risk management have arisen and can be expected
to arise in the future. Furthermore, copulas can be used to model nonlinear dependencies
between any type of economic variables. The existence of time varying copulas increases the
possibilities for research. Even though applications outside financial econometrics are rare,
one can expect the development of such models in the near future. Additional theoretic
research needs to be conducted regarding model selection tests and the modeling of higher
dimensional copulas. Once they become a more common tool, higher dimensional copulas
will most probably be used in many empirical applications.
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